Skip to main content
Log in

Reconstruction of Cyclooxygenase Evolution in Animals Suggests Variable, Lineage-Specific Duplications, and Homologs with Low Sequence Identity

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Cyclooxygenase (COX) enzymatically converts arachidonic acid into prostaglandin G/H in animals and has importance during pregnancy, digestion, and other physiological functions in mammals. COX genes have mainly been described from vertebrates, where gene duplications are common, but few studies have examined COX in invertebrates. Given the increasing ease in generating genomic data, as well as recent, although incomplete descriptions of potential COX sequences in Mollusca, Crustacea, and Insecta, assessing COX evolution across Metazoa is now possible. Here, we recover 40 putative COX orthologs by searching publicly available genomic resources as well as ~250 novel invertebrate transcriptomic datasets. Results suggest the common ancestor of Cnidaria and Bilateria possessed a COX homolog similar to those of vertebrates, although such homologs were not found in poriferan and ctenophore genomes. COX was found in most crustaceans and the majority of molluscs examined, but only specific taxa/lineages within Cnidaria and Annelida. For example, all octocorallians appear to have COX, while no COX homologs were found in hexacorallian datasets. Most species examined had a single homolog, although species-specific COX duplications were found in members of Annelida, Mollusca, and Cnidaria. Additionally, COX genes were not found in Hemichordata, Echinodermata, or Platyhelminthes, and the few previously described COX genes in Insecta lacked appreciable sequence homology (although structural analyses suggest these may still be functional COX enzymes). This analysis provides a benchmark for identifying COX homologs in future genomic and transcriptomic datasets, and identifies lineages for future studies of COX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aberer AJ, Krompass D, Stamatakis A (2013) Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst Biol 62:162–166

    Article  PubMed Central  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bayer FM, Weinheimer AJ (1974) Prostaglandins from Plexaura homomalla: ecology, utilisation and conservation of a major medical marine resource. A Symposium. Studies in Tropical Oceanography. University of Miami Press, Miami

    Google Scholar 

  • Cannon JT, Kocot KM, Waits DS, Weese DA, Swalla BJ, Santos SR, Halanych KM (2014) Phylogenomic resolution of the hemichordate and echinoderm clade. Curr Biol 24:2827–2832

    Article  CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Choe KP, Havird J, Rose R, Hyndman K, Piermarini P, Evans DH (2006) COX2 in a euryhaline teleost, Fundulus heteroclitus: primary sequence, distribution, localization, and potential function in gills during salinity acclimation. J Exp Biol 209:1696–1708

    Article  CAS  PubMed  Google Scholar 

  • Coll JC (1992) The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chem Rev 92:613–631

    Article  CAS  Google Scholar 

  • Daiyasu H, Toh H (2000) Molecular evolution of the myeloperoxidase family. J Mol Evol 51:433–445

    CAS  PubMed  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314

    Article  PubMed Central  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y, Pieper U, Sali A (2006) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics. doi:10.1002/0471140864.ps0209s50 Chapter 2: Unit 2.9

    PubMed Central  PubMed  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Flicek P, Amode MR, Barrell D et al (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flippin JL, Huggett D, Foran CM (2007) Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquat Toxicol 81:73–78

    Article  CAS  PubMed  Google Scholar 

  • Genomic Resources Development Consortium, Havird JC, Santos SR (2014) Genomic resources notes accepted 1 June 2014–31 July 2014. Mol Ecol Resour 14:1322

    Article  Google Scholar 

  • Gerhart DJ (1986) Prostaglandin-A2 in the Caribbean gorgonian Plexaura homomalla—evidence against allelopathic and antifouling roles. Biochem Sys Ecol 14:417–421

    Article  CAS  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  • Havird JC, Miyamoto MM (2010) The importance of taxon sampling in genomic studies: an example from the cyclooxygenases of teleost fishes. Mol Phylogenet Evol 56:451–455

    Article  PubMed  Google Scholar 

  • Havird JC, Miyamoto MM, Choe KP, Evans DH (2008) Gene duplications and losses within the cyclooxygenase family of teleosts and other chordates. Mol Biol Evol 25:2349–2359

    Article  CAS  PubMed  Google Scholar 

  • Hornsten L, Su C, Osbourn AE, Garosi P, Hellman U, Wernstedt C, Oliw EH (1999) Cloning of linoleate diol synthase reveals homology with prostaglandin H synthases. J Biol Chem 274:28219–28224

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa TO, Griffin KJ, Banerjee U, Herschman HR (2007) The zebrafish genome contains two inducible, functional cyclooxygenase-2 genes. Biochem Biophys Res Commun 352:181–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jarving R, Jarving I, Kurg R, Brash AR, Samel N (2004) On the evolutionary origin of cyclooxygenase (COX) isozymes: characterization of marine invertebrate COX genes points to independent duplication events in vertebrate and invertebrate lineages. J Biol Chem 279:13624–13633

    Article  PubMed  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanamoto H, Takemura M, Ohyama K (2011) Identification of a cyclooxygenase gene from the red alga Gracilaria vermiculophylla and bioconversion of arachidonic acid to PGF2α in engineered Escherichia coli. Appl Microbiol Biotechnol 91:1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Kawamura M, Inaoka H, Obata S, Harada Y (2014) Why do a wide variety of animals retain multiple isoforms of cyclooxygenase? Prostaglandins Other Lipid Mediat 109–111:14–22

    Article  PubMed  Google Scholar 

  • Kocot KM, Cannon JT, Halanych KM (2010) Elucidating animal phylogeny: Advances in knowledge and forthcoming challenges. In: DeSalle R, Sheirwater B (eds) Key Transitions. CRC Press, Florida, pp 16–35

    Google Scholar 

  • Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koljak R, Järving I, Kurg R, Boeglin WE, Varvas K, Valmsen K, Ustav M, Brash AR, Samel N (2001) The basis of prostaglandin synthesis in coral: molecular cloning and expression of a cyclooxygenase from the Arctic soft coral Gersemia fruticosa. J Biol Chem 276:7033–7040

    Article  CAS  PubMed  Google Scholar 

  • Kulmacz RJ, van der Donk WA, Tsai AL (2003) Comparison of the properties of prostaglandin H synthase-1 and -2. Prog Lipid Res 42:377–404

    Article  CAS  PubMed  Google Scholar 

  • Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095–1109

    Article  CAS  PubMed  Google Scholar 

  • Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288

    Article  CAS  PubMed  Google Scholar 

  • Le SQ, Dang CC, Gascuel O (2012) Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol Biol Evol 29:2921–2936

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Marks F (1999) Arachidonic acid and companions: an abundant source of biological signals. In: Marks F, Furstenberger G (eds) Prostaglandins, Leukotrienes, and Other Eicosanoids. Wiley-VCH, Weinheim, pp 1–46

    Chapter  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    Article  CAS  PubMed  Google Scholar 

  • Moroz LL, Kocot KM, Citarella MR et al (2014) The ctenophore genome and the evolutionary origins of neural systems. Nature 510:109–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morrow JD, Roberts LJ 2nd (1996) The isoprostanes: current knowledge and directions for future research. Biochem Pharmacol 51:1–9

    Article  CAS  PubMed  Google Scholar 

  • Noverr MC, Erb-Downward JR, Huffnagle GB (2003) Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 16:517–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ott M, Zola J, Aluru S, Stamatakis A (2007) Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L. In: ACM/IEEE Supercomputing Conference 2007

  • Paredes JF, Vera LM, Martinez-Lopez FJ, Navarro I, Sanchez Vazquez FJ (2014) Circadian rhythms of gene expression of lipid metabolism in Gilthead Sea bream liver: synchronisation to light and feeding time. Chronobiol Int 31:613–626

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed Central  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Ryan JF, Pang K, Schnitzler CE et al (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342:1242592

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanderson MJ, Shaffer HB (2002) Troubleshooting molecular phylogenetic analyses. Annu Rev Ecol Syst 33:49–72

    Article  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Triadafilopoulos G (1999) Epidemiology of NSAID induced gastrointestinal complications. J Rheumatol 26:18–24

    Google Scholar 

  • Sorbera LA, Asturiano JF, Carrillo M, Zanuy S (2001) Effects of polyunsaturated fatty acids and prostaglandins on oocyte maturation in a marine teleost, the European sea bass (Dicentrarchus labrax). Biol Reprod 64:382–389

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stanley D (2006) Prostaglandins and other eicosanoids in insects: biological significance. Annu Rev Entomol 51:25–44

    Article  CAS  PubMed  Google Scholar 

  • Stanley D, Kim Y (2011) Prostaglandins and their receptors in insect biology. Front Endocrinol (Lausanne) 2:105

    Google Scholar 

  • Stanley DW, Miller JS (2006) Eicosanoid actions in insect cellular immune functions. Entomol Exp Appl 119:1–13

    Article  CAS  Google Scholar 

  • Valmsen K, Järving I, Boeglin WE, Varvas K, Koljak R, Pehk T, Brash AR, Samel N (2001) The origin of 15R-prostaglandins in the Caribbean coral Plexaura homomalla: molecular cloning and expression of a novel cyclooxygenase. Proc Natl Acad Sci U S A 98:7700–7705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valmsen K, Boeglin WE, Järving I, Schneider C, Varvas K, Brash AR, Samel N (2004) Structural and functional comparison of 15S- and 15R-specific cyclooxygenases from the coral Plexaura homomalla. Eur J Biochem 271:3533–3538

    Article  CAS  PubMed  Google Scholar 

  • Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  CAS  PubMed  Google Scholar 

  • Varvas K, Kurg R, Hansen K, Järving R, Järving I, Valmsen K, Lõhelaid H, Samel N (2009) Direct evidence of the cyclooxygenase pathway of prostaglandin synthesis in arthropods: genetic and biochemical characterization of two crustacean cyclooxygenases. Insect Biochem Mol Biol 39:851–860

    Article  CAS  PubMed  Google Scholar 

  • Varvas K, Kasvandik S, Hansen K, Järving I, Morell I, Samel N (2013) Structural and catalytic insights into the algal prostaglandin H synthase reveal atypical features of the first non-animal cyclooxygenase. Biochim Biophys Acta 1831:863–871

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11:367–372

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation grants Assembling the Tree of Life (DEB #1036537) and Antarctic Organisms and Ecosystems (ANT#1043745) to K.M.H. and S.R.S. and National Aeronautics and Space Administration grant NNX13AJ31G to K.M.H. and K.M.K. This represents contributions #127 and #32 to the Auburn University (AU) Marine Biology Program and Molette Biology Laboratory for Environmental and Climate Change Studies, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin C. Havird.

Additional information

Data deposition

GenBank Accession Numbers KM437900-KM437941.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 Publically available datasets that were searched for cyclooxygenase sequences (XLS 41 kb)

Online Resource 2 Novel transcriptomic data for 250 taxa that were searched for cyclooxygenase sequences (XLS 72 kb)

239_2015_9670_MOESM3_ESM.xls

Online Resource 3 Table of cyclooxygenase (COX) sequences that were acquired from previous studies or public databases (XLS 38 kb)

Online Resource 4 Table of cyclooxygenase (COX) sequences that were identified as possible rogue sequences (XLS 33 kb)

239_2015_9670_MOESM5_ESM.eps

Online Resource 5 Bayesian inference (BI) phylogeny generated with PhyloBayes for 121 non-rogue cyclooxygenase (COX) and outgroup amino acid sequences used in the current analysis based on majority rule (50%). Run parameters, color schemes, shading, and scale bar as in Fig. 2. See Online Resource 7 for relationships among vertebrate COX sequences (EPS 1274 kb)

239_2015_9670_MOESM6_ESM.eps

Online Resource 6 Bayesian inference (BI; left) and maximum likelihood (ML; right) topologies for all Vertebrata/Craniata cyclooxygenase (COX) amino acid sequences used in the current analysis based on majority rule (50%). Run parameters, color schemes, shading, and scale bar are as in Figs. 1 and 2, with the exception that bolded/underlined sequences correspond to those obtained from public sources, but lacking in previous phylogenetic analyses of COX (EPS 1626 kb)

239_2015_9670_MOESM7_ESM.eps

Online Resource 7 Bayesian inference (BI; left) and maximum likelihood (ML; right) topologies for non-rogue Vertebrata/Craniata cyclooxygenase (COX) amino acid sequences used in the current analysis based on majority rule (50%). Run parameters, color schemes, shading, and scale bar are as in Figs. 1 and 2, with the exception that bolded/underlined sequences correspond to those obtained from public sources, but lacking in previous phylogenetic analyses of COX. (EPS 1560 kb)

239_2015_9670_MOESM8_ESM.xlsx

Online Resource 8 Maximum likelihood topology based on majority rule (50%) for all cyclooxygenase (COX) amino acid sequences used in the current analysis as well as the previously described functional red alga COX sequences (shown in red). Run parameters, scale bar, support values, etc. are the same as in Fig. 1. See Fig. 1 for relationships among terminal groups (XLSX 12 kb)

239_2015_9670_MOESM9_ESM.eps

Online Resource 9 The modelled structure of louse COX-1 (red) superimposed on the experimentally determined x-ray structure of sheep COX-1 (accession# 1DIY in the RCSB protein data bank, shown in blue). A general similarity between secondary structural elements suggests louse COX-1 may be functional, despite a lack of sequence homology to other COXs (EPS 791 kb)

239_2015_9670_MOESM10_ESM.tif

Online Resource 10 Table of TM scores showing similarity between the experimentally determined x-ray structure of sheep COX-1 (accession# 1DIY in the RCSB protein data bank 1DIY) and a subset of modelled COX structures for sequences described here. TM scores closer to 1 indicate a greater similarity between structures. As red alga COX has been biochemically shown to be functional, structures with similar or better TM scores may also suggest functional sequences (TIFF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Havird, J.C., Kocot, K.M., Brannock, P.M. et al. Reconstruction of Cyclooxygenase Evolution in Animals Suggests Variable, Lineage-Specific Duplications, and Homologs with Low Sequence Identity. J Mol Evol 80, 193–208 (2015). https://doi.org/10.1007/s00239-015-9670-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-015-9670-3

Keywords

Navigation