Skip to main content
Log in

Unravelling cis-Regulatory Elements in the Genome of the Smallest Photosynthetic Eukaryote: Phylogenetic Footprinting in Ostreococcus

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We used a phylogenetic footprinting approach, adapted to high levels of divergence, to estimate the level of constraint in intergenic regions of the extremely gene dense Ostreococcus algae genomes (Chlorophyta, Prasinophyceae). We first benchmarked our method against the Saccharomyces sensu stricto genome data and found that the proportion of conserved non-coding sites was consistent with those obtained with methods using calibration by the neutral substitution rate. We then applied our method to the complete genomes of Ostreococcus tauri and O. lucimarinus, which are the most divergent species from the same genus sequenced so far. We found that 77% of intergenic regions in Ostreococcus still contain some phylogenetic footprints, as compared to 88% for Saccharomyces, corresponding to an average rate of constraint on intergenic region of 17% and 30%, respectively. A comparison with some known functional cis-regulatory elements enabled us to investigate whether some transcriptional regulatory pathways were conserved throughout the green lineage. Strikingly, the size of the phylogenetic footprints depends on gene orientation of neighboring genes, and appears to be genus-specific. In Ostreococcus, 5′ intergenic regions contain four times more conserved sites than 3′ intergenic regions, whereas in yeast a higher frequency of constrained sites in intergenic regions between genes on the same DNA strand suggests a higher frequency of bidirectional regulatory elements. The phylogenetic footprinting approach can be used despite high levels of divergence in the ultrasmall Ostreococcus algae, to decipher structure of constrained regulatory motifs, and identify putative regulatory pathways conserved within the green lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Altschul SF, Boguski MS, Gish W, Wootton JC (1994) Issues in searching molecular sequence databases. Nat Genet 6(2):119–129

    Article  PubMed  CAS  Google Scholar 

  • Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D (2004) Ultraconserved elements in the human genome. Science 304:1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Bergman CM, Kreitman M (2001) Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. Genome Res 11:1335–1345

    Article  PubMed  CAS  Google Scholar 

  • Bird CP, Stranger BE, Dermitzakis ET (2006) Functional variation and evolution of non-coding DNA. Curr Opin Genet Dev 16:559–564

    Article  PubMed  CAS  Google Scholar 

  • Blanco J, Girard F, Kamachi Y, Kondoh H, Gehring WJ (2005) Functional analysis of the chicken delta1-crystallin enhancer activity in Drosophila reveals remarkable evolutionary conservation between chicken and fly. Development 132:1895–1905

    Article  PubMed  CAS  Google Scholar 

  • Bray N, Pachter L (2004) MAVID: constrained ancestral alignment of multiple sequences. Genome Res 14:693–699

    Article  PubMed  CAS  Google Scholar 

  • Brudno M, Chapman M, Göttgens B, Batzoglou S, Morgenstern B (2003a) Fast and sensitive multiple alignment of large genomic sequences. BMC Bioinform 4:66

    Article  Google Scholar 

  • Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Green ED, Sidow A, Batzoglou S (2003b) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13:721–731

    Article  PubMed  CAS  Google Scholar 

  • Bush EC, Lahn BT (2005) Selective constraint on noncoding regions of hominid genomes. PLoS Comput Biol 1:e73

    Article  PubMed  CAS  Google Scholar 

  • Byrnes JK, Morris GP, Li WH (2006) Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion. Mol Biol Evol 23:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Davis CI (2005) The evolution of noncoding DNA: how much junk, how much func? Trends Genet 21:533–536

    Article  PubMed  CAS  Google Scholar 

  • Cerruti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99

    Article  CAS  Google Scholar 

  • Chin CS, Chuang JH, Li H (2005) Genome-wide regulatory complexity in yeast promoters: separation of functionally conserved and neutral sequence. Genome Res 15:205–213

    Article  PubMed  CAS  Google Scholar 

  • Cliften P, Hillier L, Fulton L, Graves T, Miner T, Gish W, Waterston R, Johnston M (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Cooper GM, Sidow A (2003) Genomic regulatory regions: insights from comparative sequence analysis. Curr Opin Genet Dev 13:604–610

    Article  PubMed  CAS  Google Scholar 

  • Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinform 4:25

    Article  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  PubMed  CAS  Google Scholar 

  • Dermitzakis ET, Kirkness E, Schwarz S, Birney E, Reymond A, Antonarakis SE (2004) Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment. Genome Res 14:852–859

    Article  PubMed  CAS  Google Scholar 

  • Elemento O, Tavazoie S (2005) Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biol 6:R18

    Article  PubMed  Google Scholar 

  • Eszterhas S, Bouhassira E, Martin D, Fiering S (2002) Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 22:469–479

    Article  PubMed  CAS  Google Scholar 

  • Graber JH, Cantor CR, Mohr SC, Smith TF (1999) Genomic detection of new yeast pre-mRNA 3′-end-processing signals. Nucleic Acids Res 27:888–894

    Article  PubMed  CAS  Google Scholar 

  • Halligan DL, Eyre-Walker A, Andolfatto P, Keightley PD (2004) Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila. Genome Res 14:273–279

    Article  PubMed  CAS  Google Scholar 

  • Hampson S, Kibler D, Baldi P (2002) Distribution patterns of over-represented k-mers in non-coding yeast DNA. Bioinformatics 18:513–528

    Article  PubMed  CAS  Google Scholar 

  • Hermsen R, ten Wolde PR, Teichmann S (2008) Chance and necessity in chromosomal gene distributions. Trends Genet 24:216–219

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Umbach DM, Li L (2006) Accurate anchoring alignment of divergent sequences. Bioinformatics 22:29–34

    Article  PubMed  CAS  Google Scholar 

  • Ishida C, Aranda C, Valenzuela L, Riego L, DeLuna A, Recillas-Targa F, Filetici P, López-Revilla R, González A (2006) The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae. Mol Microbiol 59:1790–1806

    Article  PubMed  CAS  Google Scholar 

  • Jancek S, Gourbiere S, Moreau H, Piganeau G (2008) Clues about the genetic basis of adaptation emerge from comparing the proteomes of two Ostreococcus ecotypes (Chlorophyta, Prasinophyceae). Mol Biol Evol 25:2293–2300

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    Article  PubMed  Google Scholar 

  • Keightley PD, Lercher MJ, Eyre-Walker A (2005) Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol 3:e42

    Article  PubMed  CAS  Google Scholar 

  • Keightley PD, Lercher MJ, Eyre-Walker A (2006) Understanding the degradation of hominid gene control. PLoS Comput Biol 2:e19 author reply e26

    Article  PubMed  CAS  Google Scholar 

  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhu Q, He X, Sinha S, Halfon MS (2007) Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses. Genome Biol 8:R101

    Article  PubMed  CAS  Google Scholar 

  • Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, Ren Q, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, Van de Peer Y, Moreau H, Grigoriev IV (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710

    Article  PubMed  CAS  Google Scholar 

  • Piganeau G, Moreau H (2007) Screening the Sargasso Sea metagenome for data to investigate genome evolution in Ostreococcus (Prasinophyceae, Chlorophyta). Gene 406:184–190

    PubMed  CAS  Google Scholar 

  • Piganeau G, Desdevises Y, Derelle E, Moreau H (2008) Picoeukaryotic sequences in the Sargasso sea metagenome. Genome Biol 9:R5

    Article  PubMed  CAS  Google Scholar 

  • Pilpel Y, Sudarsanam P, Church GM (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29:153–159

    Article  PubMed  CAS  Google Scholar 

  • Pohler D, Werner N, Steinkamp R, Morgenstern B (2005) Multiple alignment of genomic sequences using CHAOS, DIALIGN and ABC. Nucleic Acids Res 33:W532–W534

    Article  PubMed  CAS  Google Scholar 

  • Ren XY, Vorst O, Fiers MW, Stiekema WJ, Nap JP (2006) In plants, highly expressed genes are the least compact. Trends Genet 22:528–532

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez F, Derelle E, Guillou L, Le Gall F, Vaulot D, Moreau H (2005) Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7:853–859

    Article  PubMed  CAS  Google Scholar 

  • Samanta M, Tongprasit W, Sethi H, Chin C, Stolc V (2006) Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway. Proc Natl Acad Sci 103:4192–4197

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W (2003) Human-mouse alignments with BLASTZ. Genome Res 13:103–107

    Article  PubMed  CAS  Google Scholar 

  • Shabalina SA, Kondrashov AS (1999) Pattern of selective constraint in C. elegans and C. briggsae genomes. Genet Res 74:23–30

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. Bioessays 27:1048–1059

    Article  PubMed  CAS  Google Scholar 

  • Siepel A, Bejerano G, Pedersen J, Hinrichs A, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier L, Richards S, Weinstock G, Wilson R, Richard A, Gibbs R, Kent W, Miller W, Haussler D (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050

    Article  PubMed  CAS  Google Scholar 

  • Tagle DA, Koop BF, Goodman M, Slightom JL, Hess DL, Jones RT (1988) Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol 203:439–455

    Article  PubMed  CAS  Google Scholar 

  • Tanay A, Regev A, Shamir R (2005) Conservation and evolvability in regulatory networks: The evolution of ribosomal regulation in yeast. Proc Natl Acad Sci 102:7203–7208

    Article  PubMed  CAS  Google Scholar 

  • Tremousaygue D, Manevski A, Bardet C, Lescure N, Lescure B (1999) Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J 20:553–561

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GT, Gruissem W, Van de Peer Y, Inze D, De Veylder L (2005) Genome-wide identification of potential plant E2F target genes. Plant Physiol 139:316–328

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, Casneuf T, Van de Peer Y (2006) Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics. Genome Biol 7:R103

    Article  PubMed  CAS  Google Scholar 

  • Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (< or =3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820

    Article  PubMed  CAS  Google Scholar 

  • Vavouri T, Elgar G (2005) Prediction of cis-regulatory elements using binding site matrices—the successes the failures and the reasons for both. Curr Opin Genet Dev 15:395–402

    Article  PubMed  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:185–211

    Article  CAS  Google Scholar 

  • Wittkopp P (2006) Evolution of cis-regulatory sequence and function in Diptera. Heredity 97:139–147

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345

    Article  PubMed  CAS  Google Scholar 

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Zhang MQ (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15:607–611

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank an anonymous referee for constructive comments on a previous version and Eric Bonnet for help with alignment software and sequence shuffling. We would also like to thank Severine Jancek, Nigel Grimsley, Stéphane Rombauts, Pierre Rouzé, David Waxman, and Jan Wuyts for critical comments and stimulating discussions. This collaboration was founded by Tournesol. G.P. was granted an EMBO short-term fellowship and a “Marine Genomics Europe” GAP fellowship (European Network of Excellence 2004–2008 GOCE-CT-2004-505403). K.V. is a postdoctoral fellow of the Fund for Scientific Research, Flanders. This work was supported by the Belgian Federal Science Policy Office: IUAP P6/25 (BioMaGNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenael Piganeau.

Additional information

Gwenael Piganeau and Klaas Vandepoele equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TXT 1336 kb)

(TXT 2028 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piganeau, G., Vandepoele, K., Gourbière, S. et al. Unravelling cis-Regulatory Elements in the Genome of the Smallest Photosynthetic Eukaryote: Phylogenetic Footprinting in Ostreococcus . J Mol Evol 69, 249–259 (2009). https://doi.org/10.1007/s00239-009-9271-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9271-0

Keywords

Navigation