Skip to main content
Log in

Is There Selection for the Pace of Successive Inactivation of the arpAT Gene in Primates?

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Pseudogenes have classically been considered inactive sequences evolving under neutrality. In recent years, however, a growing body of evidence is favoring the appearance of hypotheses attributing a functional role to pseudogenes. One of these hypotheses is that the silencing of a gene could produce a loss of function that could have been favored by natural selection. Here, we analyzed the pace of pseudogenization of arpAT, an L-DOPA transporter related to the neurotransmitter function of this amino acid in the brain. While active in rodent, dog, and chicken, arpAT has been silenced during primate evolution. Given the high number of inactivating mutations described in humans, it is possible that there have been selective pressures favoring this silencing. Through analysis of orthologous sequences in several primate species, we show that the silencing of arpAT occurred ∼77 million to 90 million years ago, and that the observed mutation pattern is likely a consequence of its antiquity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ (2002) Divergence between samples of chimpanzee and human DNA sequences is 5%, counting indels. Proc Natl Acad Sci USA 99:13633–13635

    Article  PubMed  CAS  Google Scholar 

  • Chimpanzee Sequencing, Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Google Scholar 

  • Fernandez E, Torrents D, Zorzano A, Palacin M, Chillaron J (2005) Identification and functional characterization of a novel low affinity aromatic-preferring amino acid transporter (arpAT). One of the few proteins silenced during primate evolution. J Biol Chem 280:19364–19372

    Article  PubMed  CAS  Google Scholar 

  • Hardison RC, Roskin KM, Yang S, Diekhans M, Kent WJ, Weber R, Elnitski L, Li J, O’Connor M, Kolbe D, Schwartz S, Furey TS, Whelan S, Goldman N, Smit A, Miller W, Chiaromonte F, Haussler D (2003) Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res 13:13–26

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A (2003) An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423:91–96

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  • Korneev SA, Park JH, O’Shea M (1999) Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci 19:7711–7720

    PubMed  CAS  Google Scholar 

  • Kvikstad EM, Tyekucheva S, Chiaromonte F, Makova KD (2007) A macaque’s-eye view of human insertions and deletions: differences in mechanisms. PLoS Comput Biol 3:1772–1782

    Article  PubMed  CAS  Google Scholar 

  • Lee JT (2003) Molecular biology: complicity of gene and pseudogene. Nature 423:26–28

    Article  PubMed  CAS  Google Scholar 

  • McCarrey JR, Riggs AD (1986) Determinator-inhibitor pairs as a mechanism for threshold setting in development: a possible function for pseudogenes. Proc Natl Acad Sci USA 83:679–683

    Article  PubMed  CAS  Google Scholar 

  • Menashe I, Man O, Lancet D, Gilad Y (2003) Different noses for different people. Nat Genet 34:143–144

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618

    Article  PubMed  CAS  Google Scholar 

  • Podlaha O, Webb DM, Tucker PK, Zhang J (2005) Positive selection for indel substitutions in the rodent sperm protein catsper1. Mol Biol Evol 22:1845–1852

    Article  PubMed  CAS  Google Scholar 

  • Silva JC, Kondrashov AS (2002) Patterns in spontaneous mutation revealed by human-baboon sequence comparison. Trends Genet 18:544–547

    Article  PubMed  CAS  Google Scholar 

  • Steiper ME, Young NM (2006) Primate molecular divergence dates. Mol Phylogenet Evol 41:384–394

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Torrents D, Suyama M, Zdobnov E, Bork P (2003) A genome-wide survey of human pseudogenes. Genome Res 13:2559–2567

    Article  PubMed  CAS  Google Scholar 

  • Wetterbom A, Sevov M, Cavelier L, Bergstrom TF (2006) Comparative genomic analysis of human and chimpanzee indicates a key role for indels in primate evolution. J Mol Evol 63:682–690

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:2541–2558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to C. Roos, Gene Bank of Primates (German Primate Center), for kindly providing us the prosimian DNA samples. Tomàs Marquès (Washington University, USA) helped with the use of PAML. This research was supported by the Ministerio de Educación y Ciencia of Spain (Grants SAF2007–63171, BFU2005–00243, and BFU2006–14600) and EC Project Grant 502802 EUGINDAT. We also thank the Servei de Genòmica (Universitat Pompeu Fabra) for technical support. D. Torrents is an ICREA Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Bertranpetit.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casals, F., Ferrer-Admetlla, A., Chillarón, J. et al. Is There Selection for the Pace of Successive Inactivation of the arpAT Gene in Primates?. J Mol Evol 67, 23–28 (2008). https://doi.org/10.1007/s00239-008-9120-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9120-6

Keywords

Navigation