Skip to main content
Log in

Transposable Element Orientation Bias in the Drosophila melanogaster Genome

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Nonrandom distributions of transposable elements can be generated by a variety of genomic features. Using the full D. melanogaster genome as a model, we characterize the orientations of different classes of transposable elements in relation to the directionality of genes. DNA-mediated transposable elements are more likely to be in the same orientation as neighboring genes when they occur in the nontranscribed region’s that flank genes. However, RNA-mediated transposable elements located in an intron are more often oriented in the direction opposite to that of the host gene. These orientation biases are strongest for genes with highly biased codon usage, probably reflecting the ability of such loci to respond to weak positive or negative selection. The leading hypothesis for selection against transposable elements in the coding orientation proposes that transcription termination poly(A) signal motifs within retroelements interfere with normal gene transcription. However, after accounting for differences in base composition between the strands, we find no evidence for global selection against spurious transcription termination signals in introns. We therefore conclude that premature termination of host gene transcription due to the presence of poly(A) signal motifs in retroelements might only partially explain strand-specific detrimental effects in the D. melanogaster genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Akashi H (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136:927–935

    PubMed  CAS  Google Scholar 

  • Bartolome C, Maside X, Charlesworth B (2002) On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol 19:926–937

    PubMed  CAS  Google Scholar 

  • Biemont C, Tsitrone A, Vieira C, Hoogland C (1997) Transposable element distribution in Drosophila. Genetics 147:1997–1999

    PubMed  CAS  Google Scholar 

  • Burge C, Campbell AM, Karlin S (1992) Over-representation and under-representation of short oligonucleotides in DNA-sequences. Proc Natl Acad Sci USA 89:1358–1362

    PubMed  CAS  Google Scholar 

  • Carr M, Soloway JR, Robinson TE, Brookfield JFY (2002) Mechanisms regulating the copy numbers of six LTR retrotransposons in the genome of Drosophila melanogaster. Chromosoma 110:511–518

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1983) The population-dynamics of transposable elements. Genet Res 42:1–27

    Google Scholar 

  • Charlesworth B, Langley CH (1989) The population-genetics of Drosophila transposable elements. Annu Rev Genet 23:251–287

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–1303

    PubMed  CAS  Google Scholar 

  • Daborn PJ, Yen JL, Bogwitz MR et al (2002) A single P450 allele associated with insecticide resistance in Drosophila. Science 297:2253–2256

    Article  PubMed  CAS  Google Scholar 

  • Dieringer D, Schlotterer C (2003) Two distinct modes of microsatellite mutation processes: Evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Marais G, Biemont C (2000) Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. Genetics 156:1661–1669

    PubMed  CAS  Google Scholar 

  • Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, Arabidopsis. Proc Natl Acad Sci USA 96:4482–4487

    Article  PubMed  CAS  Google Scholar 

  • Errede B, Company M, Hutchison CA (1987) Ty1 sequence with enhancer and mating–type–dependent regulatory activities. Mol Cell Biol 7:258–265

    PubMed  CAS  Google Scholar 

  • Franchini LF, Ganko EW, McDonald JF (2004) Retrotransposon-gene associations are widespread among D. melanogaster populations. Mol Biol Evol 21:1323–1331

    PubMed  CAS  Google Scholar 

  • Girard L, Freeling M (1999) Regulatory changes as a consequence of transposon insertion. Dev Genet 25:291–296

    Article  PubMed  CAS  Google Scholar 

  • Hey J, Kliman RM (2002) Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 160:595–608

    PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1966) Effect of linkage on limits to artificial selection. Genet Res 8:269–294

    PubMed  CAS  Google Scholar 

  • Ikemura T (1985) Codon usage and transfer-RNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    PubMed  CAS  Google Scholar 

  • Jakubczak JL, Burke WD, Eickbush TH (1991) Retrotransposable elements R1 and R2 interrupt the ribosomal-RNA genes of most insects. Proc Natl Acad Sci USA 88:3295–3299

    PubMed  CAS  Google Scholar 

  • Jiang YW (2002) Transcriptional cosuppression of yeast Ty1 retrotransposons. Genes & Development 16:467–478

    PubMed  CAS  Google Scholar 

  • Kaminker J, Bergman C, Kronmiller B, et al. (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3:research0084.1–20

    Article  PubMed  Google Scholar 

  • Kidwell MG, Lisch DR (2001) Perspective: Transposable elements, parasitic DNA, and genome evolution. Evolution 55:1–24

    PubMed  CAS  Google Scholar 

  • Kliman RM, Hey J (2003) Hill–Robertson interference in Drosophila melanogaster: reply to Marais, Mouchiroud and Duret. Genet Res 81:89–90

    Article  PubMed  CAS  Google Scholar 

  • Kreitman M (1983) Nucleotide polymorphism at the alcohol-dehydrogenase locus of Drosophila melanogaster. Nature 304:412–417

    Article  PubMed  CAS  Google Scholar 

  • Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B (1988) On the role of unequal exchange in the containment of transposable element copy number. Genet Res 52:223–235

    Article  PubMed  CAS  Google Scholar 

  • Lerat E, Rizzon C, Biemont C (2003) Sequence divergence within transposable element families in the Drosophila melanogaster genome. Genome Res 13:1889–1896

    PubMed  CAS  Google Scholar 

  • Lerman DN, Michalak P, Helin AB, Bettencourt BR, Feder ME (2003) Modification of heat-shock gene expression in Drosophila melanogaster populations via transposable elements. Mol Biol Evol 20:135–144

    PubMed  CAS  Google Scholar 

  • Li W–H (1997) Molecular evolution. Sinauer, Sunderland, MA

    Google Scholar 

  • Lynch M, Walsh JB (1997) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Marais G, Mouchiroud D, Duret L (2001) Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci USA 98:5688–5692

    Article  PubMed  CAS  Google Scholar 

  • Marais G, Mouchiroud D, Duret L (2003) Neutral effect of recombination on base composition in Drosophila. Genet Res 81:79–87

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Laloux H, Couette G, Alvarez T, Bessou C, Hauser O, Sookhareea S, Labouesse M, Segalat L (2002) Identification of 1088 new transposon insertions of Caenorhabditis elegans: A pilot study toward large-scale screens. Genetics 162:521–524

    PubMed  CAS  Google Scholar 

  • McDonald JF, Matyunina LV, Wilson S, Jordan IK, Bowen NJ, Miller WJ (1997) LTR retrotransposons and the evolution of eukaryotic enhancers. Genetica 100:3–13

    Article  PubMed  CAS  Google Scholar 

  • Medstrand P, van de Lagemaat LN, Mager DL (2002) Retroelement distributions in the human genome: Variations associated with age and proximity to genes. Genome Res 12:1483–1495

    Article  PubMed  CAS  Google Scholar 

  • Montgomery E, Charlesworth B, Langley CH (1987) A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res 49:31–41

    PubMed  CAS  Google Scholar 

  • Pardue ML, DeBaryshe PG (1999) Drosophila telomeres: two transposable elements with important roles in chromosomes. Genetica 107:189–196

    Article  PubMed  CAS  Google Scholar 

  • Petrov DA, Lozovskaya ER, Hartl DL (1996) High intrinsic: Rate of DNA loss in Drosophila. Nature 384:346–349

    Article  PubMed  CAS  Google Scholar 

  • Petrov DA, Hartl DL (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 15:293–302

    PubMed  CAS  Google Scholar 

  • Petrov DA, Aminetzach YT, Davis JC, Bensasson D, Hirsh AE (2003) Size matters: Non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 20:880–892

    PubMed  CAS  Google Scholar 

  • Rizzon C, Marais G, Gouy M, Biemont C (2002) Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res 12:400–407

    Article  PubMed  CAS  Google Scholar 

  • Rizzon C, Martin E, Marais G, Duret L, Segalat L, Biemont C (2003) Patterns of selection against transposons, inferred from the distribution of Tc1, Tc3 and Tc5 insertions in the mut-7 line of the nematode Caenorhabditis elegans. Genetics 165:1127–1135

    PubMed  CAS  Google Scholar 

  • Schlenke TA, Begun DJ (2004) Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci USA 101:1626–1631

    Article  PubMed  CAS  Google Scholar 

  • Semon M, Duret L (2004) Evidence that functional transcription units cover at least half of the human genome. Trends Genet 20:229–232

    Article  PubMed  CAS  Google Scholar 

  • Smit AFA (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9:657–663

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Company, New York

    Google Scholar 

  • Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, Rubin GM (1995) Gene disruptions using P transposable elements: An integral component of the Drosophila genome project. Proc Natl Acad Sci USA 92:10824–10830

    PubMed  CAS  Google Scholar 

  • Stolc V, Gauhar Z, Mason C, et al. (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306:655–660

    Article  PubMed  CAS  Google Scholar 

  • van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536

    PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    PubMed  CAS  Google Scholar 

  • Wright SI, Agrawal N, Bureau TE (2003) Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res 13:1897–1903

    PubMed  CAS  Google Scholar 

  • Yu N, Jensen–Seaman MI, Chemnick L, Ryder O, Li W–H (2004) Nucleotide diversity in gorillas. Genetics 166:1375–1383

    PubMed  CAS  Google Scholar 

  • Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to H. Ochman for his critical advising and steadfast encouragement and to L. Duret for introducing us to the issue of TE orientation bias. We also thank the discussion and comments of the University of Arizona IGERT fellows, C. Bartolomé, B. Charlesworth, E. Lerat, D. Petrov, R. Reed, and several anonymous reviewers. This research was conducted as part of the University of Arizona NSF Integrative Graduate Education Research Training (IGERT) grant Genomics Initiative (DGE-0114420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asher D. Cutter.

Additional information

[Reviewing Editor : Dr. Dmitri Petrov]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutter, A.D., Good, J.M., Pappas, C.T. et al. Transposable Element Orientation Bias in the Drosophila melanogaster Genome. J Mol Evol 61, 733–741 (2005). https://doi.org/10.1007/s00239-004-0243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0243-0

Keywords

Navigation