Skip to main content

Advertisement

Log in

Systematic review of radiological cervical foraminal grading systems

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

The study design of this paper is systematic review. The purpose of this review is to evaluate the existing radiological grading systems that are used to assess cervical foraminal stenosis. The importance of imaging the cervical spine using CT or MRI in evaluating cervical foraminal stenosis is widely accepted; however, there is no consensus for standardized methodology to assess the compression of the cervical nerve roots. A systematic search of Ovid Medline databases, Embase 1947 to present, Cinahl, Web of Science, Cochrane Library, ISRCTN and WHO international clinical trials was performed for reports of cervical foraminal stenosis published before 01 February 2020. In collaboration with the University of Leeds, a search strategy was developed. A total of 6952 articles were identified with 59 included. Most of the reports involved multiple imaging modalities with standard axial and sagittal imaging used most. The grading themes that came from this systematic review show that the most mature for cervical foraminal stenosis is described by (Kim et al. Korean J Radiol 16:1294, 2015) and (Park et al. Br J Radiol 86:20120515, 2013). Imaging of the cervical nerve root canals is mostly performed using MRI and is reported using subjective terminology. The Park, Kim and Modified Kim systems for classifying the degree of stenosis of the nerve root canal have been described. Clinical application of these scoring systems is limited by their reliance on nonstandard imaging (Park), limited validation against clinical symptoms and surgical outcome data. Oblique fine cut images derived from three dimensional MRI datasets may yield more consistency, better clinical correlation, enhanced surgical decision-making and outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alvin MD, Lubelski D, Abdullah KG et al (2016) Cost-utility analysis of anterior cervical discectomy and fusion with plating (ACDFP) versus posterior cervical foraminotomy (PCF) for patients with single-level cervical radiculopathy at 1-year follow-up. Clin Spine Surg 29:E67–E72. https://doi.org/10.1097/BSD.0000000000000099

    Article  PubMed  Google Scholar 

  2. Tumialán LM, Ponton RP, Gluf WM (2010) Management of unilateral cervical radiculopathy in the military: the cost effectiveness of posterior cervical foraminotomy compared with anterior cervical discectomy and fusion. Neurosurg Focus 28:E17. https://doi.org/10.3171/2010.1.FOCUS09305

    Article  PubMed  Google Scholar 

  3. Caridi JM, Pumberger M, Hughes AP (2011) Cervical radiculopathy: a review. HSS J 7:265–272. https://doi.org/10.1007/s11420-011-9218-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee JE, Park HJ, Lee SY et al (2017) Interreader reliability and clinical validity of a magnetic resonance imaging grading system for cervical foraminal stenosis. J Comput Assist Tomogr 41:926–930. https://doi.org/10.1097/RCT.0000000000000628

    Article  PubMed  Google Scholar 

  5. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100. https://doi.org/10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  6. Douglas-Akinwande AC, Rydberg J, Shah MV, Phillips MD, Caldemeyer KS, Lurito JT, Ying J, Mathews VP (2010) Accuracy of contrast-enhanced MDCT and MRI for identifying the severity and cause of neural foraminal stenosis in cervical radiculopathy: a prospective study. Am J Roentgenol 194:55–61. https://doi.org/10.2214/AJR.09.2988

    Article  Google Scholar 

  7. Grams AE, Gempt J, Förschler A (2010) Comparison of spinal anatomy between 3-tesla MRI and CT-myelography under healthy and pathological conditions. Surg Radiol Anat 32:581–585. https://doi.org/10.1007/s00276-009-0601-0

    Article  PubMed  Google Scholar 

  8. Schell A, Rhee JM, Holbrook J, Lenehan E, Park KY (2017) Assessing foraminal stenosis in the cervical spine: a comparison of three-dimensional computed tomographic surface reconstruction to two-dimensional modalities. Glob Spine J 7:266–271. https://doi.org/10.1177/2192568217699190

  9. Dailey AT, Tsuruda JS, Goodkin R et al (1996) Magnetic resonance neurography for cervical radiculopathy: a preliminary report. Neurosurgery 38(3):488–492. https://doi.org/10.1097/00006123-199603000-00013

  10. Gu BS, Park JH, Seong HY, Jung SK, Roh SW (2017) Feasibility of posterior cervical foraminotomy in cervical foraminal stenosis: prediction of surgical outcomes by the foraminal shape on preoperative computed tomography. SPINE 42:E267–E271. https://doi.org/10.1097/BRS.0000000000001785

    Article  PubMed  Google Scholar 

  11. Brenke C, Dostal M, Carolus A, Weiß C, Radü EW, Schmieder K et al (2014) Clinical relevance of neuroforaminal patency after anterior cervical discectomy and fusion. Acta Neurochir 156:1197–1203. https://doi.org/10.1007/s00701-014-2090-0

    Article  PubMed  Google Scholar 

  12. Roberts CC, Troy McDaniel N, Krupinski EA, Erly WK (2003) Oblique reformation in cervical spine computed tomography: a new look at an old friend. Spine 28:167–170. https://doi.org/10.1097/00007632-200301150-00013

    Article  PubMed  Google Scholar 

  13. Lin C-H, Tsai Y-H, Chang C-H et al (2013) The comparison of multiple F-wave variable studies and magnetic resonance imaging examinations in the assessment of cervical radiculopathy. Am J Phys Med Rehabil 92:737–745. https://doi.org/10.1097/PHM.0b013e31827d6546

    Article  PubMed  Google Scholar 

  14. Oh CH, Kim DY, Ji GY, Kim YJ, Yoon SH, Hyun D et al (2014) Cervical arthroplasty for moderate to severe disc degeneration: clinical and radiological assessments after a minimum follow-up of 18 months: Pfirrmann grade and cervical arthroplasty. Yonsei Med J 55:1072. https://doi.org/10.3349/ymj.2014.55.4.1072

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maulucci CM, Sansur CA, Singh V, Cholewczynski A, Shetye SS, McGilvray K et al (2016) Cortical bone facet spacers for cervical spine decompression: effects on intervertebral kinetics and foraminal area. J Neurosurg Spine:69–76. https://doi.org/10.3171/2015.4.SPINE14845

  16. Xu C, Ding ZH, Xu YK (2014) Comparison of computed tomography and magnetic resonance imaging in the evaluation of facet tropism and facet arthrosis in degenerative cervical spondylolisthesis. Genet Mol Res 13:4102–4109. https://doi.org/10.4238/2014.May.30.5

    Article  CAS  PubMed  Google Scholar 

  17. Sneag DB, Shah PH, Breighner R, Koff MF (2017) Diagnostic accuracy of zero echo time magnetic resonance imaging for cervical spine neuroforaminal stenosis. 1. https://doi.org/10.1097/00006123-199603000-00013

  18. Argentieri EC, Koff MF, Breighner RE et al (2018) Diagnostic accuracy of zero-echo time MRI for the evaluation of cervical neural foraminal stenosis. Spine 43(13):928–933. https://doi.org/10.1097/BRS.0000000000002462

  19. Tabaraee E, Kurd MF, An HS (2015) Oblique sagittal reconstructions of cervical CT scans: an accurate and efficient method for assessing true foramina dimensions. Spine J 15:S201–S202. https://doi.org/10.1016/j.spinee.2015.07.275

    Article  Google Scholar 

  20. Su et al (2017) Orthopaedic resaerch society 2017 annual meeting Poster No. 878. Quantitative Analysis of Neural Foramen Size in Patients with Acute Cervical Radiculopathy After Conservative Treatment. https://www.ors.org/wp-content/uploads/2017/03/238_ORS-2017-POSTER-BOOK.pdf

  21. Lentell G, Kruse M, Chock B, Wilson K, Iwamoto M, Martin R (2002) Dimensions of the cervical neural foramina in resting and retracted positions using magnetic resonance imaging. J Orthop Sports Phys Ther 32:380–390. https://doi.org/10.2519/jospt.2002.32.8.380

    Article  PubMed  Google Scholar 

  22. Czervionke LF, Berquist TH (1997) Imaging of the spine. Techniques of MR imaging. The Orthopedic clinics of North America 28(4):583–616. https://doi.org/10.1016/S0030-5898(05)70309-6

  23. Park HJ, Kim JH, Lee JW, Lee SY, Chung EC, Rho MH et al (2015) Clinical correlation of a new and practical magnetic resonance grading system for cervical foraminal stenosis assessment. Acta Radiol 56:727–732. https://doi.org/10.1177/0284185114537929

    Article  PubMed  Google Scholar 

  24. Park HJ, Kim SS, Han CH, Lee SY, Chung EC, Kim MS, Kwon HJ (2014) The clinical correlation of a new practical MRI method for grading cervical neural foraminal stenosis based on oblique sagittal images. Am J Roentgenol 203:412–417. https://doi.org/10.2214/AJR.13.11647

    Article  Google Scholar 

  25. Park H-J, Kim SS, Lee S-Y, Park NH, Chung EC, Rho MH, Kwon HJ, Kook SH (2013) A practical MRI grading system for cervical foraminal stenosis based on oblique sagittal images. Br J Radiol 86:20120515. https://doi.org/10.1259/bjr.20120515

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sohn HM, You JW, Lee JY (2004) The relationship between disc degeneration and morphologic changes in the intervertebral foramen of the cervical spine: a cadaveric MRI and CT study. J Korean Med Sci 19:101–106. https://doi.org/10.3346/jkms.2004.19.1.101

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mao H, Driscoll SJ, Li J-S, Li G, Wood KB, Cha TD (2016) Dimensional changes of the neuroforamina in subaxial cervical spine during in vivo dynamic flexion-extension. Spine J 16:540–546. https://doi.org/10.1016/j.spinee.2015.11.052

    Article  PubMed  Google Scholar 

  28. Takasaki H, Hall T, Jull G, Kaneko S, Iizawa T, Ikemoto Y (2009) The influence of cervical traction, compression, and spurling test on cervical intervertebral foramen size. Spine 34:1658–1662. https://doi.org/10.1097/BRS.0b013e3181a9c304

    Article  PubMed  Google Scholar 

  29. Usa H, Takei H, Hata M, Kamio H, Shida N, Senoo A (2016) Intraoperator reliability of MRI-based area measurement of intervertebral foramina in the cervical spine. Man Ther 25:e91–e92. https://doi.org/10.1016/j.math.2016.05.156

    Article  Google Scholar 

  30. Yi JS, Cha JG, Han JK, Kim H-J (2015) Imaging of herniated discs of the cervical spine: inter-modality differences between 64-slice multidetector CT and 1.5-T MRI. Korean J Radiol 16:881. https://doi.org/10.3348/kjr.2015.16.4.881

    Article  PubMed  PubMed Central  Google Scholar 

  31. Walraevens J, Liu B, Vander Sloten J, Goffin J (2009) Qualitative and quantitative assessment of degeneration of cervical intervertebral discs and facet joints. Eur Spine J 18:358–369. https://doi.org/10.1007/s00586-008-0820-9

    Article  PubMed  Google Scholar 

  32. Liu W, Hu L, Wang J, Liu M, Wang X (2015) Comparison of zero-profile anchored spacer versus plate-cage construct in treatment of cervical spondylosis with regard to clinical outcomes and incidence of major complications: a meta-analysis. Ther Clin Risk Manag 1437. https://doi.org/10.2147/TCRM.S92511

  33. Liang K-N, Feng P-Y, Feng X-R, Cheng H (2019) Diffusion tensor imaging and fiber tractography reveal significant microstructural changes of cervical nerve roots in patients with cervical spondylotic radiculopathy. World Neurosurg 126:e57–e64. https://doi.org/10.1016/j.wneu.2019.01.154

    Article  PubMed  Google Scholar 

  34. Lee KH, Park HJ, Lee SY, Chung EC, Rho MH, Shin H, Kwon YJ (2016) Comparison of two MR grading systems for correlation between grade of cervical neural foraminal stenosis and clinical manifestations. Br J Radiol 89:20150971. https://doi.org/10.1259/bjr.20150971

    Article  PubMed  PubMed Central  Google Scholar 

  35. Siemionow K, Janusz P, Glowka P (2016) Cervical cages placed bilaterally in the facet joints from a posterior approach significantly increase foraminal area. Eur Spine J 25:2279–2285. https://doi.org/10.1007/s00586-016-4430-7

    Article  PubMed  Google Scholar 

  36. Jenis LG, Banco S, Jacquemin JJ, Lin K-H (2004) The effect of posterior cervical distraction on foraminal dimensions utilizing a screw-rod system. Spine 29:763–766. https://doi.org/10.1097/01.BRS.0000112070.24165.2E

    Article  PubMed  Google Scholar 

  37. Kintzelé L, Rehnitz C, Kauczor H-U, Weber M-A (2018) Oblique sagittal images prevent underestimation of the neuroforaminal stenosis grade caused by disc herniation in cervical spine MRI. RöFo - Fortschritte Auf Dem Geb Röntgenstrahlen Bildgeb Verfahr 190:946–954. https://doi.org/10.1055/a-0612-8205

    Article  Google Scholar 

  38. Weber M-A, Rehnitz C, Kauczor H-U, Kintzelé L (2018) Correct estimation of neuroforaminal stenosis grade caused by disc herniation in cervical spine mri by using oblique sagittal MR sequences. Berlin. https://doi.org/10.1055/s-0038-1639538

  39. Fu MC, Webb ML, Buerba RA, Neway WE, Brown JE, Trivedi M, Lischuk AW, Haims AH, Grauer JN (2016) Comparison of agreement of cervical spine degenerative pathology findings in magnetic resonance imaging studies. Spine J 16:42–48. https://doi.org/10.1016/j.spinee.2015.08.026

    Article  PubMed  Google Scholar 

  40. Cosar M, Khoo LT, Yeung CA, Yeung AT (2007) A comparison of the degree of lateral recess and foraminal enlargement with facet preservation in the treatment of lumbar stenosis with standard surgical tools versus a novel powered filing instrument: a cadaver study. SAS J 1:135–142

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dostal M, Brenke C, Barth M, Schmieder K (2012) Clinical relevance of postoperative neuroforaminal stenosis following ACDF. Eur Spine J 21:269–337. https://doi.org/10.1007/s00586-012-2269-0

    Article  Google Scholar 

  42. Miyazaki M, Hong SW, Yoon SH, Morishita Y, Wang JC (2008) Reliability of a magnetic resonance imaging-based grading system for cervical intervertebral disc degeneration. J Spinal Disord Tech 21:288–292. https://doi.org/10.1097/BSD.0b013e31813c0e59

    Article  PubMed  Google Scholar 

  43. Park MS, Moon S-H, Lee H-M, Kim T-H, Oh JK, Lee SY et al (2015) Diagnostic value of oblique magnetic resonance images for evaluating cervical foraminal stenosis. Journal of the North American Spine Society (NASSJ) 15:607–611

    Article  Google Scholar 

  44. Janusz P, Siemionow K (2015) Influence of posterior cervical cage on cervical foraminal area. Eur Spine J 24:743–800. https://doi.org/10.1007/s00586-015-4131-7

    Article  Google Scholar 

  45. Lee S-H, Park SY, Kim K-T, et al. (2015) A novel comprehensive MRI classification system for cervical foraminal stenosis. Cervical spine research society (CSRS). https://www.csrs.org/UserFiles/file/CSRS_2015_Final_Program_book_compressed.pdf#page=164

  46. Kim S, Lee JW, Chai JW, Yoo HJ, Kang Y, Seo J, Ahn JM, Kang HS (2015) A new MRI grading system for cervical foraminal stenosis based on axial T2-weighted images. Korean J Radiol 16:1294–1302. https://doi.org/10.3348/kjr.2015.16.6.1294

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ko S, Choi W, Lee J (2018) The prevalence of cervical foraminal stenosis on computed tomography of a selected community-based Korean population. Clin Orthop Surg 10:433–438. https://doi.org/10.4055/cios.2018.10.4.433

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nakamura S, Taguchi M (2017) Area of ostectomy in posterior percutaneous endoscopic cervical foraminotomy: images and mid-term outcomes. Asian Spine J 11:968. https://doi.org/10.4184/asj.2017.11.6.968

    Article  PubMed  PubMed Central  Google Scholar 

  49. Siller S, Kasem R, Witt T-N, Tonn JC, Zausinger S (2018) Painless motor radiculopathy of the cervical spine: clinical and radiological characteristics and long-term outcomes after operative decompression. J Neurosurg Spine 28:621–629. https://doi.org/10.3171/2017.10.SPINE17821

    Article  PubMed  Google Scholar 

  50. Kitagawa T, Fujiwara A, Kobayashi N, Saiki K, Tamai K, Saotome K (2004) Morphologic changes in the cervical neural foramen due to flexion and extension: in vivo imaging study. Spine 29:2821–2825. https://doi.org/10.1097/01.brs.0000147741.11273.1c

    Article  PubMed  Google Scholar 

  51. Mizouchi T, Yamazaki A, Izumi T, Fujikawa R (2014) Recurrent foraminal stenosis after posterior cervical foraminotomy: measurement of foramen and facet by computed tomography. Eur Spine J 23:527–557. https://doi.org/10.1007/s00586-014-3517-2

    Article  Google Scholar 

  52. Chang V, Basheer A, Baumer T, Oravec D, McDonald CP, Bey MJ, Bartol S, Yeni YN (2017) Dynamic measurements of cervical neural foramina during neck movements in asymptomatic young volunteers. Surg Radiol Anat 39:1069–1078. https://doi.org/10.1007/s00276-017-1847-6

    Article  PubMed  Google Scholar 

  53. Freund W, Klessinger S, Mueller M, Halatsch ME, Hoepner G, Schmitz BL (2013) Coronal oblique orientation offers improved visualization of neuroforamina in cervical spine magnetic resonance imaging. J Neurol Sci 333:e595. https://doi.org/10.1016/j.jns.2013.07.2077

    Article  Google Scholar 

  54. Anderst WJ (2012) Automated measurement of neural foramen cross-sectional area during in vivo functional movement. Comput Methods Biomech Biomed Engin 15:1313–1321. https://doi.org/10.1080/10255842.2011.590450

    Article  PubMed  Google Scholar 

  55. Kim W, Ahn K-S, Kang CH, Kang WY, Yang K-S (2017) Comparison of MRI grading for cervical neural foraminal stenosis based on axial and oblique sagittal images: concordance and reliability study. Clin Imaging 43:165–169. https://doi.org/10.1016/j.clinimag.2017.03.008

    Article  PubMed  Google Scholar 

  56. Ray WZ, Akbari S, Shah LM, Bisson E (2015) Correlation of foraminal area and response to cervical nerve root injections. Cureus. https://doi.org/10.7759/cureus.286

  57. He X, Leung S, Warrington J, Shmuilovich O, Li S (2018) Automated neural foraminal stenosis grading via task-aware structural representation learning. Neurocomputing 287:185–195. https://doi.org/10.1016/j.neucom.2018.01.088

    Article  Google Scholar 

  58. Yeni YN, Lindquist M, Oravec D, Baumer T, Bey MJ, Bartol S, Chang V (2017) Cervical nerve root to foraminal size ratio correlates with post-surgical patient-reported outcomes. J Orthop Res 35(1)

  59. Yeni YN et al (2016) Dynamic foraminal dimensions during neck extension and rotation in fusion and artificial disc replacement. Conference Poster - Poster No. 0262, Orthopaedic Research Society Annual Meeting 2016

  60. Yeni YN et al (2016) In vivo dynamic changes in the foraminal dimensions during neck extension and rotation. Conference Poster - Poster No. 1762, Orthopaedic Research Society Annual Meeting 2016

  61. Smith ZA, Khayatzadeh S, Bakhsheshian J, Harvey M, Havey RM, Voronov LI et al (2016) Dimensions of the cervical neural foramen in conditions of spinal deformity: an ex vivo biomechanical investigation using specimen-specific CT imaging. Eur Spine J 25:2155–2165. https://doi.org/10.1007/s00586-016-4409-4

    Article  PubMed  Google Scholar 

  62. Verstraete KLA, Martens F, Smeets P, Vandekerckhove T, Meire D, Parizel PM, van de Velde E, Calliauw L (1989) Traumatic lumbosacral nerve root meningoceles: the value of myelography, CT and MRI in the assessment of nerve root continuity. Neuroradiology 31:425–429. https://doi.org/10.1007/BF00343868

    Article  CAS  PubMed  Google Scholar 

  63. Frymoyer JW, Gordon SL, American Academy of Orthopaedic Surgeons, et al. (1989) New perspectives on low back pain: workshop, Airlie, Virginia, May 1988. The Academy, Park Ridge, Ill

  64. McAfee PC, Ullrich CG, Yuan HA et al (1981) Computed tomography in degenerative spinal stenosis. Clin Orthop Relat Res (161):221–234. https://doi.org/10.1148/radiographics.2.4.529

  65. Whitley AS, Clark KC (2016) Clark’s positioning in radiography, 13th edition. CRC Press, Taylor & Francis Group, Boca Raton

  66. Wildermuth S, Zanetti M, Duewell S, Schmid MR, Romanowski B, Benini A, Böni T, Hodler J (1998) Lumbar spine: quantitative and qualitative assessment of positional (upright flexion and extension) MR imaging and myelography. Radiology 207:391–398. https://doi.org/10.1148/radiology.207.2.9577486

    Article  CAS  PubMed  Google Scholar 

  67. Park HJ (2017) Reliability and clinical validity of an MRI grading system for cervical foraminal stenosis. 24th Annual Scientific Meeting of the European Society of Musculoskeletal Radiology (ESSR), Bari/Italy, June 15-17, 2017. Skeletal Radiol 46:845–871. https://doi.org/10.1007/s00256-017-2619-4

  68. Park MS, Moon S-H, Lee H-M, Kim TH, Oh JK, Lee SY, Oh JB, Riew KD (2015b) Diagnostic value of oblique magnetic resonance images for evaluating cervical foraminal stenosis. Spine J 15:607–611. https://doi.org/10.1016/j.spinee.2014.10.019

    Article  PubMed  Google Scholar 

  69. Tanaka N, Fujimoto Y, An HS et al (2000) The anatomic relation among the nerve roots, intervertebral foramina, and intervertebral discs of the cervical spine. Spine 25:286–291. https://doi.org/10.1097/00007632-200002010-00005

    Article  CAS  PubMed  Google Scholar 

  70. Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, Halabi S, Turner JA, Avins AL, James K, Wald JT, Kallmes DF, Jarvik JG (2015) Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 36:811–816. https://doi.org/10.3174/ajnr.A4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partly funded by the Leeds General Infirmary Neurosurgery Research Fund. Dr. Meacock is supported by a Royal College of Surgeons Research Fellowship and a National Institute of Health Research grant.

Author information

Authors and Affiliations

Authors

Contributions

On behalf of all authors, I declare that we have participated sufficiently in the writing of the paper to take public responsibility for all the information submitted within this manuscript. All authors have reviewed the final version of the manuscript and approve it for publication.

Corresponding author

Correspondence to James Meacock.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meacock, J., Schramm, M., Selvanathan, S. et al. Systematic review of radiological cervical foraminal grading systems. Neuroradiology 63, 305–316 (2021). https://doi.org/10.1007/s00234-020-02596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02596-5

Keywords

Navigation