Skip to main content

Advertisement

Log in

Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Regional cerebral blood volume (rCBV) and permeability surfaces (rPS) permit in vivo assessment of glioma microvasculature, which provides quite important pathophysiological information in grading gliomas. The aim of our study was to simultaneously examine rCBV and rPS in glioma patients to determine their correlation with histological grade using CT perfusion imaging.

Methods

A total of 22 patients with gliomas underwent multislice CT perfusion imaging preoperatively. Low-grade and high-grade groups were categorized corresponding to WHO grade II gliomas and WHO grade III or IV gliomas, respectively, as determined by histopathological examination. rCBVs and rPSs were obtained from regions of maximal abnormality in tumor parenchyma on CBV and PS color perfusion maps. Perfusion parameters were compared using the Kruskal-Wallis test in order to evaluate the differences in relation to tumor grade. The Pearson coefficients of rCBV and rPS for each tumor grade were assessed using SPSS 13.0 software.

Results

rCBV and rPS provided significant P-value in differentiating glioma grade (low-grade gliomas 3.28±2.01 vs 2.12±3.19 ml/100 g/min, high-grade gliomas 8.87±4.63 vs 12.11±3.18 ml/100 g/min, P<0.05). Receiver operating characteristic (ROC) curves revealed better specificity and sensitivity in PS than in CBV for glioma grade. A significant correlation between rCBV and rPS was observed in high-grade gliomas (r=0.684). rCBVs in oligodendrogliomas were higher than in other low-grade gliomas, whereas their rPS values did not show a parallel difference.

Conclusion

Perfusion CT provides useful information for glioma grading and might have the potential to significantly impact clinical management and follow-up of cerebral gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miles KA (2002) Functional computed tomography in oncology. Eur J Cancer 38:2079–2084

    Article  PubMed  CAS  Google Scholar 

  2. Miles KA, Charnsangavej C, Lee FT et al (2000) Application of CT in the investigation of angiogenesis in oncology. Acad Radiol 7:840–850

    Article  PubMed  CAS  Google Scholar 

  3. Gillard JH, Antoun NM, Burnet NG et al (2001) Reproducibility of quantitative CT perfusion imaging. Br J Radiol 74:552–555

    PubMed  CAS  Google Scholar 

  4. Gillard JH, Minhas P, Hayball MP et al (2000) Assessment of quantitative computed tomographic cerebral perfusion imaging with H2 15O positron emission tomography. Neurol Res 22:457–464

    PubMed  CAS  Google Scholar 

  5. Figarella-Branger D, Bouvier C (2005) Histological classification of human gliomas: state of art and controversies. Bull Cancer 92:301–309

    PubMed  Google Scholar 

  6. Smith JS, Perry A, Borell TJ et al (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18:636–645

    PubMed  CAS  Google Scholar 

  7. Thiessen B, Maguire JA, McNeil K (2003) Loss of heterozygosity for loci on chromosome arms 1p and 10q in oligodendroglial tumors: relationship to outcome and chemosensitivity. J Neurooncol 64:271–278

    Article  PubMed  Google Scholar 

  8. Thorpe PE, Chaplin DJ, Blakey DC (2003) The first international conference on vascular targeting: meeting overview. Cancer Res 63:1144–1147

    PubMed  CAS  Google Scholar 

  9. Galbraith SM (2001) Combretastatin A4 phosphate (CA4P) reduces tumor blood flow in animals and man, demonstrated by MRI. Proc Am Soc Clin Oncol 20:278a

    Google Scholar 

  10. Shih SC, Mullen A, Abrams K et al (1999) Role of protein kinase C isoforms in phorbol ester-induced vascular endothelial growth factor expression in human glioblastoma cells. J Biol Chem 274:15407–15414

    Article  PubMed  CAS  Google Scholar 

  11. Barker FG II, Chang SM, Huhn SL et al (1997) Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors. Cancer 80:936–941

    Article  PubMed  Google Scholar 

  12. Scott JN, Brasher PM, Sevick RJ et al (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949

    PubMed  CAS  Google Scholar 

  13. Chaudhry IH, O’Donovan DG, Brenchley PE et al (2001) Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 39:409–415

    Article  PubMed  CAS  Google Scholar 

  14. Machein MR, Plate KH (2000) VEGF in brain tumors.J Neurooncol 50:109–120

    Article  PubMed  CAS  Google Scholar 

  15. Toi M, Matsumoto T, Bando H (2001) Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2:667–673

    Article  PubMed  CAS  Google Scholar 

  16. Daumas-Duport C, Varlet P, Tucker ML (1997) Oligodendrogliomas. Part I: Patterns of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases. J Neurooncol 34:37–59

    Article  PubMed  CAS  Google Scholar 

  17. Guha A, Mukherjee J (2004) Advances in the biology of astrocytomas. Curr Opin Neurol 17:655–662

    Article  PubMed  Google Scholar 

  18. Amoroso A (1997) Vascular endothelial growth factor: a key mediator of neoangiogenesis. A review. Eur Rev Med Pharmacol Sci 1:17–25

    PubMed  CAS  Google Scholar 

  19. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    PubMed  CAS  Google Scholar 

  20. Weidner N, Folkman J (1996) Tumoral vascularity as a prognostic factor in cancer. Important Adv Oncol 167–190

  21. Dvorak HF, Nagy JA, Feng D et al (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132

    PubMed  CAS  Google Scholar 

  22. Taylor JS, Tofts PS, Port R et al (1999) MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 10:903–907

    Article  PubMed  CAS  Google Scholar 

  23. Roberts HC, Roberts TP, Brasch RC et al (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899

    PubMed  CAS  Google Scholar 

  24. Provenzale JM, Wang GR, Brenner T et al (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 178:711–716

    PubMed  Google Scholar 

  25. Law M, Yang S, Babb JS et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755

    PubMed  Google Scholar 

  26. Griebel J, Mayr NA, de Vries A et al (1997) Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging.J Magn Reson Imaging 7:111–119

    PubMed  CAS  Google Scholar 

  27. Maia, AC Jr, Malheiros SM, da Rocha AJ et al (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 26:777–783

    PubMed  Google Scholar 

  28. Jackson A, Kassner A, Annesley-Williams D et al (2002) Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23:7–14

    PubMed  Google Scholar 

  29. Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathological grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 179:783–789

    PubMed  Google Scholar 

  30. Aronen HJ, Perkio J (2002) Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am 12:501–523

    Article  PubMed  Google Scholar 

  31. Lev MH, Ozsunar Y, Henson JW et al (2004) Elevated relative cerebral blood volume of oligodendrogliomas: a confounder of glial tumor grading specificity using dynamic spin-echo MR susceptibility mapping. AJNR Am J Neuroradiol 25:214–221

    PubMed  Google Scholar 

  32. Diego JC, Bruce RR, Michael HL (2004) Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9:528–537

    Article  Google Scholar 

  33. Lupo JM, Cha S, Chang SM et al (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 26:1446–1454

    PubMed  Google Scholar 

  34. Mukonoweshuro W, Herwardkar A, Jackson A (2002) Imaging of intracranial tumours. Imaging 14:380–395

    Google Scholar 

  35. Provenzale JM, Mukundan S, Dewhirst M (2005) The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol 185:763–767

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Min Chen.

Additional information

Presented at the 91st Meeting of the Radiological Society of North America, Chicago, IL, 27 November to 3 December 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, B., Ling, H.W., Chen, K.M. et al. Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology 48, 773–781 (2006). https://doi.org/10.1007/s00234-006-0120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-006-0120-1

Keywords

Navigation