Skip to main content

Advertisement

Log in

Search for Novel Plasma Membrane Proteins as Potential Biomarkers in Human Mesenchymal Stem Cells Derived from Dental Pulp, Adipose Tissue, Bone Marrow, and Hair Follicle

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

One of the drawbacks preventing the use of mesenchymal stem cells (MSCs) in clinical practice is the heterogeneous nature of their cultures. MSC cultures are not homogeneously formed by the MSCs and may contain non-mesenchymal cell types. Therefore, prior to use in clinics or research, complete characterization of MSCs should be performed to demonstrate the existence or absence of proper stem cell markers, many of which are happened to be cell-surface proteins. Unfortunately, the success of MSC characterization studies is limited due to the low specificity of the currently available cell-surface markers. Therefore, in this study, we aimed to investigate the plasma membrane (PM) proteins of MSCs isolated from human dental pulp (DP), adipose tissue (AT), bone marrow (BM), and hair follicle (HF) with the hope of proposing novel putative specific MSC markers. Differential-velocity centrifugation was used to enrich PM proteins. The isolated proteins were then identified by nLC-MS/MS and subjected to bioinformatics analysis. Proteins that were unique to each MSC type (CD9, CD10, CD63 for DP-MSCs; CD26, CD81, CD201, CD364 for AT-MSCs; Cd49a, CD49d for HF-MSCs; CD49e, CD56, CD92, CD97, CD156b, CD156c, CD220, CD221, CD298, CD315 for BM-MSCs) and common to all four MSC types (CD13, CD29, CD44, CD51, CD59, CD73, CD90) were identified. Uncharacterized proteins that have transmembrane (TM) domains were also detected. Some of the proteins identified in this study were the putative cell-surface markers that might be used for characterization of MSCs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

If acquired, the raw data for LC–MS/MS experiments will be provided via e-mail.

References

  • Abdallah BM, Kassem M (2008) Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15:109–116

    Article  CAS  PubMed  Google Scholar 

  • Araya HF, Sepulveda H, Lizama CO, Vega OA, Jerez S, Briceno PF, Thaler R, Riester SM, Antonelli M, Salazar-Onfray F, Rodriguez JP, Moreno RD, Montecino M, Charbonneau M, Dubois CM, Stein GS, van Wijnen AJ, Galindo MA (2018) Expression of the ectodomain-releasing protease ADAM17 is directly regulated by the osteosarcoma and bone-related transcription factor RUNX2. J Cell Biochem 119:8204–8219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker N, Zhang G, You Y, Tuan RS (2012) Caveolin-1 regulates proliferation and osteogenic differentiation of human mesenchymal stem cells. J Cell Biochem 113:3773–3787

    Article  CAS  PubMed  Google Scholar 

  • Billing AM, Ben Hamidane H, Dib SS, Cotton RJ, Bhagwat AM, Kumar P, Hayat S, Yousri NA, Goswami N, Suhre K, Rafii A, Graumann J (2016) Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers. Sci Rep 6:21507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno L, Hoffmann R, McBlane F, Brown J, Gupta R, Joshi C, Pearson S, Seidl T, Heyworth C, Enver T (2004) Molecular signatures of self-renewal, differentiation, and lineage choice in multipotential hemopoietic progenitor cells in vitro. Mol Cell Biol 24:741–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundgaard L, Stensballe A, Elbaek KJ, Berg LC (2018) Mapping of equine mesenchymal stromal cell surface proteomes for identification of specific markers using proteomics and gene expression analysis: an in vitro cross-sectional study. Stem Cell Res Ther 9:288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappellesso-Fleury S, Puissant-Lubrano B, Apoil PA, Titeux M, Winterton P, Casteilla L, Bourin P, Blancher A (2010) Human fibroblasts share immunosuppressive properties with bone marrow mesenchymal stem cells. J Clin Immunol 30:607–619

    Article  PubMed  Google Scholar 

  • Deschaseaux F, Gindraux F, Saadi R, Obert L, Chalmers D, Herve P (2003) Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med, low phenotype. Br J Haematol 122:506–517

    Article  PubMed  Google Scholar 

  • Dhaliwal A, Brenner M, Wolujewicz P, Zhang Z, Mao Y, Batish M, Kohn J, Moghe PV (2016) Profiling stem cell states in three-dimensional biomaterial niches using high content image informatics. Acta Biomater 45:98–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dollet PE, Ravau J, Andre F, Najimi M, Sokal E, Lombard C (2016) Comprehensive screening of cell surface markers expressed by adult-derived human liver stem/progenitor cells harvested at passage 5: potential implications for engraftment. Stem Cells Int 2016:9302537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Boumsell L, Balderas R, Bensussan A, Gattei V, Horejsi V, Jin BQ, Malavasi F, Mortari F, Schwartz-Albiez R, Stockinger H, van Zelm MC, Zola H, Clark G (2015) CD Nomenclature 2015: human leukocyte differentiation antigen workshops as a driving force in immunology. J Immunol 195:4555–4563

    Article  CAS  PubMed  Google Scholar 

  • Ertas G, Ural E, Ural D, Aksoy A, Kozdag G, Gacar G, Karaoz E (2012) Comparative analysis of apoptotic resistance of mesenchymal stem cells isolated from human bone marrow and adipose tissue. Sci World J 2012:105698

    Article  CAS  Google Scholar 

  • Ferro F, Spelat R, Beltrami AP, Cesselli D, Curcio F (2012) Isolation and characterization of human dental pulp derived stem cells by using media containing low human serum percentage as clinical grade substitutes for bovine serum. PLoS ONE 7:e48945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folgiero V, Migliano E, Tedesco M, Iacovelli S, Bon G, Torre ML, Sacchi A, Marazzi M, Bucher S, Falcioni R (2010) Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transplant 19:1225–1235

    Article  PubMed  Google Scholar 

  • Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, Kassem M (2005) Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells 23:1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Gaudet P, Livstone MS, Lewis SE, Thomas PD (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform 12:449–462

    Article  PubMed  PubMed Central  Google Scholar 

  • Graneli C, Thorfve A, Ruetschi U, Brisby H, Thomsen P, Lindahl A, Karlsson C (2014) Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res 12:153–165

    Article  CAS  PubMed  Google Scholar 

  • Halfon S, Abramov N, Grinblat B, Ginis I (2011) Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev 20:53–66

    Article  CAS  PubMed  Google Scholar 

  • Helbig AO, Heck AJ, Slijper M (2010) Exploring the membrane proteome–challenges and analytical strategies. J Proteom 73:868–878

    Article  CAS  Google Scholar 

  • Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  CAS  PubMed  Google Scholar 

  • Kane MS, Diamonstein CJ, Hauser N, Deeken JF, Niederhuber JE, Vilboux T (2019) Endosomal trafficking defects in patient cells with KIAA1109 biallelic variants. Genes Dis 6:56–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaoz E, Dogan BN, Aksoy A, Gacar G, Akyuz S, Ayhan S, Genc ZS, Yuruker S, Duruksu G, Demircan PC, Sariboyaci AE (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133:95–112

    Article  CAS  PubMed  Google Scholar 

  • Karaoz E, Demircan PC, Saglam O, Aksoy A, Kaymaz F, Duruksu G (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136:455–473

    Article  PubMed  CAS  Google Scholar 

  • Ke AW, Shi GM, Zhou J, Huang XY, Shi YH, Ding ZB, Wang XY, Devbhandari RP, Fan J (2011) CD151 amplifies signaling by integrin alpha6beta1 to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology 140:1629–1641

    Article  CAS  PubMed  Google Scholar 

  • Kovacs GG, Trabattoni G, Hainfellner JA, Ironside JW, Knight RS, Budka H (2002) Mutations of the prion protein gene phenotypic spectrum. J Neurol 249:1567–1582

    Article  CAS  PubMed  Google Scholar 

  • Kundrotas G (2012) Surface markers distinguishing mesenchymal stem cells from fibroblasts. Acta Medica Litu 19:75–79

    Article  Google Scholar 

  • Li C, Zhao H, Wang B (2021) Mesenchymal stem/stromal cells: developmental origin, tumorigenesis and translational cancer therapeutics. Transl Oncol 14:100948

    Article  PubMed  Google Scholar 

  • Lisianyi MI (2013) Mesenchymal stem cells and their immunological properties. Fiziol Zh 59:126–134

    Article  CAS  Google Scholar 

  • Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E (2014) Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 7:118–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Mihaylova Z (2019) Stem cells and mesenchymal stem cell markers. Int J Med Sci Clin Invent 6:4544–45477

    Article  Google Scholar 

  • Niehage C, Steenblock C, Pursche T, Bornhauser M, Corbeil D, Hoflack B (2011) The cell surface proteome of human mesenchymal stromal cells. PLoS ONE 6:e20399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niehage C, Karbanova J, Steenblock C, Corbeil D, Hoflack B (2016) Cell surface proteome of dental pulp stem cells identified by label-free mass spectrometry. PLoS ONE 11:e0159824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunez-Gomez E, Pericacho M, Ollauri-Ibanez C, Bernabeu C, Lopez-Novoa JM (2017) The role of endoglin in post-ischemic revascularization. Angiogenesis 20:1–24

    Article  CAS  PubMed  Google Scholar 

  • Orsburn BC, Stockwin LH, Newton DL (2011) Challenges in plasma membrane phosphoproteomics. Expert Rev Proteom 8:483–494

    Article  CAS  Google Scholar 

  • Pionneau C, Canelle L, Bousquet J, Hardouin J, Bigeard J, Caron M, Joubert-Caron R (2005) Proteomic analysis of membrane-associated Proteins from the Breast Cancer Cell Line MCF7. Cancer Genom Proteom 2:199–207

    CAS  Google Scholar 

  • Ramos TL, Sanchez-Abarca LI, Muntion S, Preciado S, Puig N, Lopez-Ruano G, Hernandez-Hernandez A, Redondo A, Ortega R, Rodriguez C, Sanchez-Guijo F, del Canizo C (2016) MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal 14:2

    Article  CAS  Google Scholar 

  • Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467

    Article  CAS  PubMed  Google Scholar 

  • ten Dijke P, Goumans MJ, Pardali E (2008) Endoglin in angiogenesis and vascular diseases. Angiogenesis 11:79–89

    Article  CAS  PubMed  Google Scholar 

  • Torán JL, López JA, Gomes-Alves P, Aguilar S, Torroja C, Trevisan-Herraz M, Moscoso I, Sebastião MJ, Serra M, Brito C, Cruz FM (2019) Definition of a cell surface signature for human cardiac progenitor cells after comprehensive comparative transcriptomic and proteomic characterization. Sci Rep 9(1):1–6

    Article  CAS  Google Scholar 

  • Tsuruya K, Chikada H, Ida K, Anzai K, Kagawa T, Inagaki Y, Mine T, Kamiya A (2015) A paracrine mechanism accelerating expansion of human induced pluripotent stem cell-derived hepatic progenitor-like cells. Stem Cells Dev 24:1691–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uezumi A, Nakatani M, Ikemoto-Uezumi M, Yamamoto N, Morita M, Yamaguchi A, Yamada H, Kasai T, Masuda S, Narita A, Miyagoe-Suzuki Y, Takeda S, Fukada S, Nishino I, Tsuchida K (2016) Cell-surface protein profiling identifies distinctive markers of progenitor cells in human skeletal muscle. Stem Cell Rep 7:263–278

    Article  CAS  Google Scholar 

  • Verrier S, Hogan A, McKie N, Horton M (2004) ADAM gene expression and regulation during human osteoclast formation. Bone 35:34–46

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Laliena M, Romero X, March S, Requena V, Petriz J, Engel P (2005) Characterization of antibodies submitted to the B cell section of the 8th Human Leukocyte Differentiation Antigens Workshop by flow cytometry and immunohistochemistry. Cell Immunol 236:6–16

    Article  CAS  PubMed  Google Scholar 

  • Wetzig A, Alaiya A, Al-Alwan M, Pradez CB, Pulicat MS, Al-Mazrou A, Shinwari Z, Sleiman GM, Ghebeh H, Al-Humaidan H, Gaafar A, Kanaan I, Adra C (2013) Differential marker expression by cultures rich in mesenchymal stem cells. BMC Cell Biol 14:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin K, Wang S, Zhao RC (2019) Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark Res 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoneten KK, Kasap M, Akpinar G, Kanli A, Karaoz E (2019) Comparative proteomics analysis of four commonly used methods for identification of novel plasma membrane proteins. J Membr Biol 252:587–608

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M, Xu X (2006) Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168:1879–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zola H (2004) High-sensitivity immunofluorescence/flow cytometry: detection of cytokine receptors and other low-abundance membrane molecules. Curr Protoc Cytom. https://doi.org/10.1002/0471142956.cy0603s30

    Article  PubMed  Google Scholar 

  • Zola H, Swart B, Nicholson I, Aasted B, Bensussan A, Boumsell L, Buckley C, Clark G, Drbal K, Engel P, Hart D, Horejsi V, Isacke C, Macardle P, Malavasi F, Mason D, Olive D, Saalmueller A, Schlossman SF, Schwartz-Albiez R, Simmons P, Tedder TF, Uguccioni M, Warren H (2005) CD molecules 2005: human cell differentiation molecules. Blood 106:3123–3126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with the grant number of 113S868. The funding body had no role in the design or execution of the study.

Funding

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the grant number of 113S868.

Author information

Authors and Affiliations

Authors

Contributions

GA: Experimental design, carrying out experiments, writing the manuscript. KKY: Experimental design, carrying out experiments. MK: Experimental design, carrying out experiments, writing the manuscript. EK: Stem cell isolation and characterization experiments.

Corresponding author

Correspondence to Murat Kasap.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest.

Ethical approval

The MSC lines used in this study were previously isolated and used in several studies of ours. Their ethical approvals for isolation were granted by Kocaeli University Ethics Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akpinar, G., Yoneten, K.K., Kasap, M. et al. Search for Novel Plasma Membrane Proteins as Potential Biomarkers in Human Mesenchymal Stem Cells Derived from Dental Pulp, Adipose Tissue, Bone Marrow, and Hair Follicle. J Membrane Biol 254, 409–422 (2021). https://doi.org/10.1007/s00232-021-00190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-021-00190-1

Keywords

Navigation