Skip to main content
Log in

Effect of Transmembrane Electric Field on GM1 Containing DMPC–Cholesterol Monolayer: A Computational Study

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Transmembrane electric potentials and membrane curvature have always provided pathways to mediate different cellular processes. We present results of molecular dynamics (MD) simulations of lipid monolayer composed of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol (CHOL) under a transverse electric field to monitor the effect of electric field on membrane containing ganglioside monosialo 1 (GM1). Four systems were studied with membrane monolayer in the presence and absence of GM1 with and without applying electric field along the normal of the monolayer. The applied transmembrane electric field was 0.4 mV/Å which corresponds to the action potential of animal cell. Our results indicate that the electric field induces a considerable lateral stress on the monolayer in the presence of GM1, which is evident from the lateral pressure profiles. It was found that due to the application of electric field major perturbation was caused to the system containing GM1, manifested by the bending of the monolayer. We believe this study provides correlation between electric field and spontaneous membrane bending, specially based on the membrane composition. The consequences of these MD simulations provide considerable insights to different biological phenomenon and lipid membrane models.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmadpoor F, Sharma P (2015) Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale 7:16555–16570

    CAS  PubMed  Google Scholar 

  • Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes GE, Bassereau P (2014) Membrane shape modulates transmembrane protein distribution. Dev Cell 28:212–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aksimentiev A, Schulten K (2005) Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88:3745–3761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen HC (1983) RATTLE: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52:24–34

    CAS  Google Scholar 

  • Aussenac F, Laguerre M, Schmitter JM, Dufourc EJ (2003) Detailed structure and dynamics of Bicelle phospholipids using selectively deuterated and perdeuterated labels. 2H NMR and molecular mechanics study. Langmuir 19:10468–10479

    CAS  Google Scholar 

  • Azzo A, Tessitore A, Sano R (2006) Gangliosides as apoptotic signals in ER stress response. Cell Death Differ 13:404–414

    PubMed  Google Scholar 

  • Bahri MA, Heyne BJ, Hans P, Seret AE, Mickalad AA, Hoebeke MD (2005) Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol. Biophys Chem 114:53–61

    CAS  PubMed  Google Scholar 

  • Baoukina S, Monticelli L, Marrink SJ, Tieleman DP (2007) Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 23:12617–12623

    CAS  PubMed  Google Scholar 

  • Baoukina S, Marrink SJ, Tieleman DP (2009) Lateral pressure profiles in lipid monolayers. Faraday Discuss 144:393–409

    Google Scholar 

  • Basu I, Mukhopadhyay C (2014) Insights into binding of cholera toxin to GM1 containing membrane. Langmuir 30:15244–15252

    CAS  PubMed  Google Scholar 

  • Basu I, Mukhopadhyay C (2015) In silico phase separation in the presence of GM1 in ternary and quaternary lipid bilayers. Phys Chem Chem Phys 17:17130–17139

    CAS  PubMed  Google Scholar 

  • Bennett WFD, MacCallum JL, Tieleman DP (2009) Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes. J Am Chem Soc 131:1972–1978

    CAS  PubMed  Google Scholar 

  • Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    CAS  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    CAS  PubMed  Google Scholar 

  • Bruhn DS, Lomholt MA, Khandelia H (2016) Quantifying the relationship between curvature and electric potential in lipid bilayers. J Phys Chem B 120:4812–4817

    CAS  PubMed  Google Scholar 

  • Chang-Ileto B, Frere SG, Chan RB, Voronov SV, Roux A, Di Paolo G (2011) Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell 20:206–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee C, Mukhopadhyay C (2002) Melittin–GM1 interaction: a model for a side-by-side complex. Biochem Biophys Res Commun 292:579–585

    CAS  PubMed  Google Scholar 

  • Chaves EP, Sipione S (2010) Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 584:1748–1759

    Google Scholar 

  • Cote LJ, Kim F, Huang J (2009) Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049

    CAS  PubMed  Google Scholar 

  • Czub J, Baginski M (2006) Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol. Biophys J 90:2368–2382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    CAS  Google Scholar 

  • Dimova R (2014) Recent developments in the field of bending rigidity measurements on membranes. Adv Colloid Interface Sci 208:225–234

    CAS  PubMed  Google Scholar 

  • Drin G, Casella JF, Gautier R, Boehmer T, Schwartz TU, Antonny B (2007) A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14:138–146

    CAS  PubMed  Google Scholar 

  • Drin G, Morello V, Casella JF, Gounon P, Antonny B (2008) Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320:670–673

    CAS  PubMed  Google Scholar 

  • Duncan SL, Larson RG (2008) Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys J 94:2965–2986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey SL, Chi EY, Arratia C, Majewski J, Kjaer K, Lee KYC (2008) Condensing and fluidizing effects of ganglioside GM1 on phospholipid films. Biophys J 94:3047–3064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fricke N, Dimova R (2016) Article GM1 softens POPC membranes and induces the formation of micron-sized domains. Biophys J 111:1935–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goñi FM, Alonso A (2006) Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 1758:1902–1921

    PubMed  Google Scholar 

  • Gumbart J, Khalili-Araghi F, Sotomayor M, Roux B (2012) Constant electric field simulations of the membrane potential illustrated with simple systems. Biochim Biophys Acta Biomembr 1818:294–302

    CAS  Google Scholar 

  • Haucke V, Neher E, Sigrist SJ (2011) Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nat Rev 12:127–138

    CAS  Google Scholar 

  • Hirai M, Iwase H, Arai S, Takizawa T, Hayashi K (1998) Interaction of gangliosides with proteins depending on oligosaccharide chain and protein surface modification. Biophys J 74:1380–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    CAS  PubMed  Google Scholar 

  • Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116:3164–3179

    PubMed  PubMed Central  Google Scholar 

  • Komljenovic I, Marquardt D, Harroun TA, Sternin E (2010) Location of chlorhexidine in DMPC model membranes: a neutron diffraction study. Chem Phys Lipids 163:480–487

    CAS  PubMed  Google Scholar 

  • Kucerka N, Marquardt D, Harroun TA, Nieh MP, Wassall SR, Jong DH, Schafer LV, Marrink SJ, Katsaras J (2010) Cholesterol in bilayers with PUFA chains: doping with DMPC or POPC results in sterol reorientation and membrane-domain formation. Biochemistry 49:7485–7493

    CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G (2002) Ganglioside function in calcium homeostasis and signaling. Neurochem Res 27:637–647

    CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Matsudaira P, Kaiser CA, Kriger M, Scott MP, Zipursky SL, Darnell J (2004) Molecular cell biology, 5th edn. Freeman, New York

    Google Scholar 

  • Manna M, Mukhopadhyay C (2013) Binding, conformational transition and dimerization of amyloid-β peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation. PLoS ONE 8:1–13

    Google Scholar 

  • Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556

    CAS  PubMed  Google Scholar 

  • Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    CAS  PubMed  Google Scholar 

  • McMahon HT, Boucrot E (2015) Membrane curvature at a glance. J Cell Sci 128:1065–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Méléard P, Gerbeaud C, Pott T, Fernandez-Puente L, Bivas I, Mitov MD, Dufourcq J, Bothorel P (1997) Bending elasticities of model membranes: influences of temperature and sterol content. Biophys J 72:2616–2629

    PubMed  PubMed Central  Google Scholar 

  • Meyer F, Smit B (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci USA 106:3654–3658

    PubMed  Google Scholar 

  • Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    CAS  Google Scholar 

  • Nielsen SO, Lopez CF, Moore PB, Shelley JC, Klein ML (2003) Molecular dynamics investigations of lipid Langmuir monolayers using a coarse-grain model. J Phys Chem B 107:13911–13917

    CAS  Google Scholar 

  • Noback CR, Strominger NL, Demarest RJ, Ruggiero DA (eds) (2005) The human nervous system: structure and function. Springer, Berlin, p 744

    Google Scholar 

  • Olsen BN, Schlesinger PH, Baker NA (2009) Perturbations of membrane structure by cholesterol and cholesterol derivatives are determined by sterol orientation. J Am Chem Soc 131:4854–4865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rózycki B, Lipowsky R (2015) Spontaneous curvature of bilayer membranes from molecular simulations: asymmetric lipid densities and asymmetric adsorption. J Chem Phys 142:054101

    PubMed  Google Scholar 

  • Safran SA (1994) Statistical thermodynamics of surfaces, interfaces, and membranes. Addison-Wesley, Reading

  • Schnaar RL, Gerardy-Schahn R, Hildebrandt H (2014) Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 94:461–518

    PubMed  PubMed Central  Google Scholar 

  • Serro AP, Galante R, Kozica A, Paradiso P, Goncalves da Silva AMPS, Luzyanina KV, Fernandes AC, Saramago B (2014) Effect of tetracaine on DMPC and DMPC + cholesterol biomembrane models: liposomes and monolayers. Colloids Surf B 116:63–71

    CAS  Google Scholar 

  • Shahzadi Z, Mukhopadhyay C (2017) Interaction between luteinizing hormone-releasing hormone and GM1-doped cholesterol/sphingomyelin vesicles: a spectroscopic study. J Membr Biol 250:617–627

    CAS  PubMed  Google Scholar 

  • Shahzadi Z, Das S, Bala T, Mukhopadhyay C (2018) Phase behavior of GM1-containing DMPC–cholesterol monolayer: experimental and theoretical study. Langmuir 34:11602–11611

    CAS  PubMed  Google Scholar 

  • Shibata Y, Hu J, Kozlov MM, Rapoport TA (2009) Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25:329–354

    CAS  PubMed  Google Scholar 

  • Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346:967–989

    CAS  PubMed  Google Scholar 

  • Vitkova V, Petrov AG (2013) Lipid bilayers and membranes: material properties. In: Iglic A Genova J (eds) Advances in planar lipid bilayers and liposomes. Academic, New York, pp 89–138

    Google Scholar 

  • Wu G, Lu ZH, Xie X, Li B, Ledeen RW (2001a) Mutant NG108-15 cells (NG-CR60) deficient in GM1 synthase respond aberrantly to axonogenic stimuli and are vulnerable to calcium-induced apoptosis: they are rescued with LIGA-20. J Neurochem 76:690–702

    CAS  PubMed  Google Scholar 

  • Wu G, Xie X, Lu Z-H, Ledeen RW (2001b) Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc Natl Acad Sci USA 98:307–312

    CAS  PubMed  Google Scholar 

  • Xavier R, Brennan T, Li Q, McCormack C, Seed B (1998) Membrane compartmentation is required for efficient T cell activation. Immunity 8:723–732

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Fatemeh Khalili-Aragahi (Department of Physics, University of Illinois, Chicago) since this work had been initiated in her lab. Z.S. thanks the University Grants Commission (UGC), New Delhi, for the Award of a Junior Research Fellowship. This work is partially funded by the Center for Advanced Studies, Department of Chemistry, University of Calcutta. We are also thankful to Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta.

Funding

The study has received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitali Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This article does not contain any studies with individual participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

232_2019_101_MOESM1_ESM.docx

Graphical representation of change in surface area plotted against time. Order parameter calculated for the DMPC sn-1 chain (black line) and sn-2 chain (red line) for the 2:1 DMPC/CHOL system. Supplementary material 1 (DOCX 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzadi, Z., Mukhopadhyay, C. Effect of Transmembrane Electric Field on GM1 Containing DMPC–Cholesterol Monolayer: A Computational Study. J Membrane Biol 253, 11–24 (2020). https://doi.org/10.1007/s00232-019-00101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-019-00101-5

Keywords

Navigation