Skip to main content
Log in

Size Effects on the Interaction of QDs with the Mitochondrial Membrane In Vitro

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The mitochondrial toxicity induced by GSH-CdTe Quantum dots (QDs) of different sizes was investigated. The decreases in absorbance and transmission electron microscopy images show that QDs induce the swelling of mitochondria. Results of flow cytometry indicate that QDs cause a reduction of mitochondrial membrane potential (MMP). A remarkable increase in fluidity of protein regions of mitochondrial membrane is observed, whereas the lipid regions are not obviously affected. Cyclosporin A (CsA) effectively prevents the QD-induced mitochondrial swelling. On the basis of these results, it is proposed that QDs induce mitochondrial permeability transition (MPT). Moreover, with increasing QDs size, a pronounced MPT is observed. The difference between the membrane fluidity induced by QDs and Cadmium ion and the ineffective protective effects of EDTA suggests that the mitochondrial toxicity of QDs cannot be only attributed to the release of metal ion. The protective effects of HSA indicate that the interaction of QDs with pore-forming protein gives rise to the increase in membrane fluidity. This hypothesis is demonstrated by the interaction of QDs with model membranes and proteins using differential scanning calorimetry and isothermal titration microcalorimetry. In conclusion, as the size of QDs increases, the binding affinity of QDs with membrane protein increases, and therefore causes a pronounced mitochondrial damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267:2934–2939

    CAS  PubMed  Google Scholar 

  • Chen N, He Y, Su YY, Li XM, Huang Q, Wang HF, Zhang XZ, Tai RZ, Fan CH (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33:1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Choi B, Hwang S, Kim I, Shin H, Kim Y, Kim E (1998) Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor. Appl Phys Lett 73:3129–3131

    Article  CAS  Google Scholar 

  • Cossarizza A, Baccaranicontri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45

    Article  CAS  PubMed  Google Scholar 

  • Deng ZJ, Liang MT, Toth I, Monteiro M, Minchin RF (2012) Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7:314–322

    Article  CAS  PubMed  Google Scholar 

  • Eliseev P, Li H, Stintz A, Liu G, Newell T, Malloy K, Lester L (2000) Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes. Appl Phys Lett 77:262–264

    Article  CAS  Google Scholar 

  • Fernandes MA, Custodio JB, Santos MS, Moreno AJ, Vicente JA (2006) Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondrion 6:176–185

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin a binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Detection of Mitochondrial Diseases, Springer US, pp 167–172

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 4(2):165–172

    Article  Google Scholar 

  • Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kuroda S, Tada M, Houkin K, Iwasaki Y, Abe H (2003) Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury. Brain Res 960:62–70

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    Article  CAS  PubMed  Google Scholar 

  • Lai L, Lin C, Xu ZQ, Han XL, Tian FF, Mei P, Li DW, Ge YS, Jiang FL, Zhang YZ (2012) Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin. Spectrochim Acta Part A 97:366–376

    Article  CAS  Google Scholar 

  • Lai L, Jin JC, Xu ZQ, Ge YS, Jiang FL, Liu Y (2015a) Spectroscopic and microscopic studies on the mechanism of mitochondrial toxicity induced by CdTe QDs modified with different ligands. J Membran Biol 248(4):1–14

    Article  CAS  Google Scholar 

  • Lai L, Jin JC, Xu ZQ, Mei P, Jiang FL, Liu Y (2015b) Necrotic cell death induced by the protein-mediated intercellular uptake of CdTe quantum dots. Chemosphere 135:240–249

    Article  CAS  PubMed  Google Scholar 

  • Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1787:1395–1401

    Article  CAS  Google Scholar 

  • Leutwyler WK, Bürgi SL, Burgl H (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  • Li JH, Zhang Y, Xiao Q, Tian FF, Liu XR, Li R, Zhao GY, Jiang FL, Liu Y (2011) Mitochondria as target of quantum dots toxicity. J Hazard Mater 194:440–444

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319–330

    Article  CAS  PubMed  Google Scholar 

  • Liu XR, Li JH, Zhang Y, Ge YS, Tian FF, Dai J, Jiang FL, Liu Y (2011) Mitochondrial permeability transition induced by different concentrations of zinc. J Membran Biol 244:105–112

    Article  CAS  Google Scholar 

  • Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120

    Article  CAS  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalika N, Parvez S (2015) Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity. Toxicol Mech Method 25(5):1–9

    Article  CAS  Google Scholar 

  • Passarella S, Atlante A, Valenti D, de Bari L (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2:319–343

    Article  CAS  PubMed  Google Scholar 

  • Petronilli V, Šileikytė J, Zulian A, Dabbeni-Sala F, Jori G, Gobbo S, Tognon G, Nikolov P, Bernardi P, Ricchelli F (2009) Switch from inhibition to activation of the mitochondrial permeability transition during hematoporphyrin-mediated photooxidative stress. Unmasking pore-regulating external thiols. Biochimica et Biophysica Acta 1787:897–904

    Article  CAS  PubMed  Google Scholar 

  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100

    Article  CAS  PubMed  Google Scholar 

  • Raffaelle RP, Castro SL, Hepp AF, Bailey SG (2002) Quantum dot solar cells. Prog Photovoltaics Res Appl 10:433–439

    Article  CAS  Google Scholar 

  • Ricchelli F, Jori G, Gobbo S, Nikolov P, Petronilli V (2005) Discrimination between two steps in the mitochondrial permeability transition process. Int J Biochem Cell Biol 37:1858–1868

    Article  CAS  PubMed  Google Scholar 

  • Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schäffler M, Schmid G, Simon U, Kreyling WG (2012) Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6:36–46

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870

    Article  CAS  PubMed  Google Scholar 

  • Son DI, Kwon BW, Park DH, Seo W-S, Yi Y, Angadi B, Lee C-L, Choi WK (2012) Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7:465–471

    Article  CAS  PubMed  Google Scholar 

  • Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium based, aqueous phase–synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25

    Article  CAS  PubMed  Google Scholar 

  • Unfried K, Albrecht C, Klotz L-O, Von Mikecz A, Grether-Beck S, Schins RP (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71

    Article  CAS  Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    Article  CAS  PubMed  Google Scholar 

  • Xiao JB, Kai GY, Chen XQ (2012) Effect of CdTe QDs on the protein-drug interactions. Nanotoxicology 6:304–314

    Article  CAS  PubMed  Google Scholar 

  • Xin LL, Wang JS, Fan GQ, Che BZ, Wu YH, Guo SF, Tong J (2015) Oxidative stress and mitochondrial injury‐mediated cytotoxicity induced by silver nanoparticles in human A549 and HepG2 cells. Environ Toxicol

  • Yang YJ, Lan JF, Xu ZG, Chen T, Zhao T, Cheng T, Shen JM, Lv SY, Zhang HX (2014) Toxicity and biodistribution of aqueous synthesized ZnS and ZnO quantum dots in mice. Nanotoxicology 8:107–116

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li JH, Liu XR, Jiang FL, Tian FF, Liu Y (2011) Spectroscopic and microscopic studies on the mechanisms of mitochondrial toxicity induced by different concentrations of cadmium. J Membran Biol 241:39–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Science Fund for Distinguished Young Scholars of China (Grant No. 21225313) and National Natural Science Foundation of China (Grant Nos. 21403017, 21473125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Lai or Yi Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, L., Li, YP., Mei, P. et al. Size Effects on the Interaction of QDs with the Mitochondrial Membrane In Vitro. J Membrane Biol 249, 757–767 (2016). https://doi.org/10.1007/s00232-016-9920-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9920-3

Keywords

Navigation