Skip to main content
Log in

Are Aquaporins the Missing Transmembrane Osmosensors?

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Regulation of cell volume is central to homeostasis. It is assumed to begin with the detection of a change in water potential across the bounding membrane, but it is not clear how this is accomplished. While examples of general osmoreceptors (which sense osmotic pressure in one phase) and stretch-activated ion channels (which require swelling of a cell or organelle) are known, effective volume regulation requires true transmembrane osmosensors (TMOs) which directly detect a water potential difference spanning a membrane. At present, no TMO molecule has been unambiguously identified, and clear evidence for mammalian TMOs is notably lacking. In this paper, we set out a theory of TMOs which requires a water channel spanning the membrane that excludes the major osmotic solutes, responds directly without the need for any other process such as swelling, and signals to other molecules associated with the magnitude of changing osmotic differences. The most likely molecules that are fit for this purpose and which are also ubiquitous in eukaryotic cells are aquaporins (AQPs). We review experimental evidence from several systems which indicates that AQPs are essential elements in regulation and may be functioning as TMOs; i.e. the first step in an osmosensing sequence that signals osmotic imbalance in a cell or organelle. We extend this concept to several systems of current interest in which the cellular involvement of AQPs as simple water channels is puzzling or counter-intuitive. We suggest that, apart from regulatory volume changes in cells, AQPs may also be acting as TMOs in red cells, secretory granules and microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Hamdah R, Cho W, Cho S, Jeremic A, Kelly M, Ilie AE, Jena BP (2004) Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol Int 28:7–17

    Article  CAS  PubMed  Google Scholar 

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alexandre J, Lassalles JP (1991) Hydrostatic and osmotic-pressure activated channel in plant vacuole. Biophys J 60:1326–1336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babazadeh R, Furukawa T, Hohmann S, Furukawa K (2014) Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog 1 in osmoadaptation. Sci Rep 4:4697

    Article  PubMed Central  PubMed  Google Scholar 

  • Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci USA 108:2563–2568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blank ME, Ehmke H (2003) Aquaporin-1 and HCO3–Cl transporter-mediated transport of CO2 across the human erythrocyte membrane. J Physiol 550:419–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boron WF, Endeward V, Gros G, Musa-Aziz R, Pohl P (2011) Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels. ChemPhysChem 12:1017–1019

    Article  CAS  PubMed  Google Scholar 

  • Brewster JL, Gustin MC (2014) Hog 1: 20 years of discovery and impact. Sci Signal 7:re7

    Article  PubMed  Google Scholar 

  • Chen Q, Duan E (2011) Aquaporins in sperm osmoadaptation: an emerging role for volume regulation. Acta Pharmacol Sin 32:721–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Q, Peng H, Lei L, Zhang Y, Kuang H, Cao Y, Shi Q, Ma T, Duan E (2011) Aquaporin3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration. Cell Res 21:922–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho SJ, Sattar A, Jeong EH, Satchi M, Cho JA, Dash S, Mayes MS, Stromer MH, Jena BP (2002) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci USA 99:4720–4724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen DM (2007) The transient receptor potential vanilloid-responsive 1 and 4 cation channels: role in neuronal osmosensing and renal physiology. Curr Opin Nephrol Hypertens 16:451–458

    Article  CAS  PubMed  Google Scholar 

  • Conde M, Chaves M, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602

    Article  CAS  PubMed  Google Scholar 

  • Cooper GJ, Boron WF (1998) Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Physiol 275:C1481–C1486

    CAS  PubMed  Google Scholar 

  • Curry MR, Shachar-Hill B, Hill AE (2001) Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations. J Membr Biol 181:115–123

    Article  CAS  PubMed  Google Scholar 

  • Dainty J (1963) Water relations of plant cells. Adv Bot Res 1:279–326

    Article  CAS  Google Scholar 

  • Davis IS, Shachar-Hill B, Curry MR, Kim KS, Pedley TJ, Hill AE (2007) Osmosis in semi-permeable pores: an examination of the basic flow equations based on an experimental and molecular dynamics study. Proc R Soc Lond A 463:881–896

    Article  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Echevarria M, Windhager EE, Frindt G (1996) Selectivity of the renal collecting duct water channel aquaporin-3. J Biol Chem 271:25079–25082

    Article  CAS  PubMed  Google Scholar 

  • Eckhard A, Gleiser C, Rask-Andersen H, Arnold H, Liu W, MacK A, Müller M, Löwenheim H, Hirt B (2012) Co-localisation of Kir4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K+ recycling routes. Cell Tissue Res 350:27–43

    Article  CAS  PubMed  Google Scholar 

  • Edelheit O, Ben-Shahar R, Dascal N, Hanukoglu A, Hanukoglu I (2014) Conserved charged residues at the surface and interface of epithelial sodium channel subunits-roles in cell surface expression and the sodium self-inhibition response. FEBS J 281:2097–2111

    Article  CAS  PubMed  Google Scholar 

  • Eijkelkamp N, Quick K, Wood JN (2013) Transient receptor potential channels and mechanosensation. Annu Rev Neurosci 36:519–546

    Article  CAS  PubMed  Google Scholar 

  • Ford P, Rivarola V, Chara O, Blot-Chabaud M, Cluzeaud F, Farman N, Parisi M, Capurro C (2005) Volume regulation in cortical collecting duct cells: role of AQP2. Biol Cell 97:687–697

    Article  CAS  PubMed  Google Scholar 

  • Forst S, Delgado J, Inouye M (1989) Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the OmpF and OmpC genes in Escherichia coli. Proc Natl Acad Sci USA 86:6052–6056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galizia L, Pizzoni A, Fernandez J, Rivarola V, Capurro C, Ford P (2012) Functional interaction between AQP2 and TRPV4 in renal cells. J Cell Biochem 113:580–589

    Article  CAS  PubMed  Google Scholar 

  • Geijer C, Ahmadpour D, Palmgren M, Filipsson C, Klein DM, Tamas MJ, Hohmann S, Lindkvist-Petersson K (2012) Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport. J Biol Chem 287:23562–23570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffin MDW, Gerrard JA (2012) The relationship between oligomeric state and protein function. Adv Exp Med Biol 747:74–90

    Article  CAS  PubMed  Google Scholar 

  • Grunnet M, MacAulay N, Jorgensen NK, Jensen BS, Olesen SP, Klaerke DA (2002) Regulation of cloned, Ca2+-activated K+ channels by cell volume changes. Eur J Physiol 444:167–177

    Article  CAS  Google Scholar 

  • Grunnet M, Jespersen T, MacAulay N, Jorgensen NK, Schmitt N, Pongs O, Olesen SP, Klaerke DA (2003) KCNQ1 channels sense small changes in cell volume. J Physiol 549:419–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hammami S, Willumsen NJ, Olsen HL, Morera FJ, Latorre R, Klaerke DA (2009) Cell volume and membrane stretch independently control K+ channel activity. J Physiol 587:2225–2231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harteneck C, Reiter B (2007) TRP channels activated by extracellular hypo-osmoticity in epithelia. Biochem Soc Trans 35:91–95

    Article  CAS  PubMed  Google Scholar 

  • Hill AE (1972) Osmotic flow and solute reflection zones. J Theor Biol 36:255–270

    Article  CAS  PubMed  Google Scholar 

  • Hill AE (1982) Osmosis: a bimodal theory with implications for symmetry. Proc R Soc B 215:155–174

    Article  CAS  Google Scholar 

  • Hill AE, Shachar-Hill B (2006) A new approach to epithelial isotonic fluid transport: an osmosensor feedback model. J Membr Biol 210:77–90

    Article  CAS  PubMed  Google Scholar 

  • Hill AE, Shachar-Hill Y (2013) Response to “What do aquaporin knockout studies tell us about fluid transport in epithelia?” Maclaren OJ, Sneyd J, Crampin EJ (2013) J Membr Biol 246:297–305. J Membr Biol 246:665–667

    Article  CAS  PubMed  Google Scholar 

  • Hill AE, Shachar-Hill B, Shachar-Hill Y (2004) What are aquaporins for? J Membr Biol 197:1–32

    Article  CAS  PubMed  Google Scholar 

  • Hoefner DM, Blank ME, Diedrich DF (1997) The anion transporter and a 28 kDa protein are selectively photolabeled by p-azidobenzylphlorizin under conditions that alter RBC morphology, flexibility, and volume. Biomembranes 1327:231–241

    Article  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029

    Article  CAS  PubMed  Google Scholar 

  • Jacobs MH, Stewart DR (1942) The role of carbonic anhydrase in certain ionic exchanges involving the erythrocyte. The Journal of General Physiology 25:539–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang XJ, Bett GCL, Li XY, Bondarenko VE, Rasmusson RL (2003) C-type inactivation involves a significant decrease in the intracellular aqueous pore volume of Kv1.4 K+ channels expressed in Xenopus oocytes. J Physiol 549:683–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasprowicz A (2011) Osmosensing. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Springer, Berlin, pp 225–240

    Chapter  Google Scholar 

  • Kida H, Miyoshi T, Manabe K, Takahashi N, Konno T, Ueda S, Chiba T, Shimizu T, Okada Y, Morishima S (2005) Roles of aquaporin-3 water channels in volume-regulatory water flow in a human epithelial cell line. J Membr Biol 208:55–64

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Davis IS, Macpherson PA, Pedley TJ, Hill AE (2005) Osmosis in small pores: a molecular dynamics study of the mechanism of solvent transport. Proc R Soc A 461:273–296

    Article  CAS  Google Scholar 

  • Kraemer R (2009) Osmosensing and osmosignaling in Corynebacterium glutamicum. Amino acids 37:487–497

    Article  CAS  Google Scholar 

  • Kuang KY, Yiming M, Wen Q, Li YS, Ma L, Iserovich P, Verkman AS, Fischbarg J (2004) Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. Exp Eye Res 78:791–798

    Article  CAS  PubMed  Google Scholar 

  • Liu XB, Bandyopadhyay B, Nakamoto T, Singh B, Liedtke W, Melvin JE, Ambudkar I (2006) A role for AQP5 in activation of TRPV4 by hypotonicity—concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495

    Article  CAS  PubMed  Google Scholar 

  • Lukacovic MF, Verkman AS, Dix JA, Solomon AK (1984) Specific interaction of the water transport inhibitor, pCMBS, with band 3 in red blood cell membranes. Biomembranes 778:253–259

    Article  CAS  Google Scholar 

  • Maathuis FJM (2011) Vacuolar two-pore K+ channels act as vacuolar osmosensors. New Phytol 191:84–91

    Article  CAS  PubMed  Google Scholar 

  • Matsuki M, Hashimoto S, Shimono M, Murakami M, Fujita-Yoshigaki J, Furuyama S, Sugiya H (2005) Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J Membr Biol 203:119–126

    Article  CAS  PubMed  Google Scholar 

  • Matsuki-Fukushima M, Fujita-Yoshigaki J, Murakami M, Katsumata-Kato O, Yokoyama M, Sugiya H (2013) Involvement of AQP6 in the mercury-sensitive osmotic lysis of rat parotid secretory granules. J Membr Biol 246:209–214

    Article  CAS  PubMed  Google Scholar 

  • Mauro A (1957) Nature of solvent transfer in osmosis. Science 126:252–253

    Article  CAS  PubMed  Google Scholar 

  • Mauro A (1981) The role of negative pressure in osmotic equilibrium and osmotic flow. In: Ussing H (ed) Water transport across epithelia. Munksgaard, Copenhagen, pp 107–109

    Google Scholar 

  • Meena N, Kaur H, Mondal AK (2010) Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. J Biol Chem 285:12121–12132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Missner A, Kügler P, Saparov SM, Sommer K, Mathai JC, Zeidel ML, Pohl P (2008) Carbon dioxide transport through membranes. J Biol Chem 283:25340–25347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions—a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  • Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 43:C543–C548

    Google Scholar 

  • Ostrander DB, Gorman JA (1999) The extracellular domain of the Saccharomyces cerevisiae Sln1p membrane osmolarity sensor is necessary for kinase activity. J Bacteriol 181:2527–2534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ozu M, Dorr RA, Gutiérrez F, Teresa Politi M, Toriano R (2013) Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism. Biophys J 104:85–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen SF, Kapus A, Hoffmann EK (2011) Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 22:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Poolman B, Blount P, Folgering JHA, Friesen RHE, Moe PC, van der Heide T (2002) How do membrane proteins sense water stress? Mol Microbiol 44:889–902

    Article  CAS  PubMed  Google Scholar 

  • Poolman B, Spitzer JJ, Wood JA (2004) Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biomembranes 1666:88–104

    Article  CAS  Google Scholar 

  • Racher KI, Voegele RT, Marshall EV, Culham DE, Wood JM, Jung H, Bacon M, Cairns MT, Ferguson SM, Liang W-J, Henderson PJF, White G, Hallett FR (1999) Purification and reconstitution of an osmosensor: transporter ProP of Escherichia coli senses and responds to osmotic shifts. Biochemistry 38:1676–1684

    Article  CAS  PubMed  Google Scholar 

  • Rand RP, Parsegian VA, Rau DC (2000) Intracellular osmotic action. Cell Mol Life Sci 57:1018–1032

    Article  CAS  PubMed  Google Scholar 

  • Ray PM (1960) On the theory of osmotic water movement. Plant Physiol 35:783–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192:289–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaber J, Angel AM, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, Posas F, Goksor M, Peter M, Hohmann S, Klipp E (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J 39:1547–1556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schliess F, Reinehr R, Haussinger D (2007) Osmosensing and signaling in the regulation of mammalian cell function. FEBS J 274:5799–5803

    Article  CAS  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  • Sugiya H, Matsuki M (2006) AQPs and control of vesicle volume in secretory cells. J Membr Biol 210:155–159

    Article  CAS  PubMed  Google Scholar 

  • Sugiya H, Matsuki-Fukushima M, Hashimoto S (2008) Role of aquaporins and regulation of secretory vesicle volume in cell secretion. J Cell Mol Med 12:1486–1494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamas MJ, Rep M, Thevelein JM, Hohmann S (2000) Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472:159–165

    Article  CAS  PubMed  Google Scholar 

  • Tanghe A, Van Dijck P, Thevelein JM (2006) Why do microorganisms have aquaporins? Trends Microbiol 14:78–86

    Article  PubMed  Google Scholar 

  • Thevenod F (2002) Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol 283:C651–C672

    Article  CAS  Google Scholar 

  • Toon MR, Solomon AK (1996) Permeability and reflection coefficients of urea and small amides in the human red cell. J Membr Biol 153:137–146

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozakib K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verkman AS (2002) Physiological importance of aquaporin water channels. Ann Med 34:192–200

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E (2007) Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157:534–544

    Article  CAS  PubMed  Google Scholar 

  • Wang LC, Morgan LK, Godakumbura P, Kenney LJ, Anand GS (2012) The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm. EMBO J 31:2648–2659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wood JM (2007) Bacterial osmosensing transporters. Methods Enzymol 428:77–107

    Article  CAS  PubMed  Google Scholar 

  • Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65:215–238

    Article  CAS  PubMed  Google Scholar 

  • Wspalz T, Fujiyoshi Y, Engel A (2009) The AQP structure and functional implications. Handb Exp Pharmacol 190:31–56

    Article  Google Scholar 

  • Ye Q, Wiera B, Steudle E (2004) A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration. J Exp Bot 55:449–461

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Muhr J, Steudle E (2005) A cohesion/tension model for the gating of aquaporins allows estimation of water channel pore volumes in Chara. Plant, Cell Environ 28:525–535

    Article  CAS  Google Scholar 

  • Zimmerberg J, Parsegian VA (1986) Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323:36–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bruria Shachar-Hill for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Hill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, A.E., Shachar-Hill, Y. Are Aquaporins the Missing Transmembrane Osmosensors?. J Membrane Biol 248, 753–765 (2015). https://doi.org/10.1007/s00232-015-9790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9790-0

Keywords

Navigation