Skip to main content
Log in

Nanoscale, Electric Field-Driven Water Bridges in Vacuum Gaps and Lipid Bilayers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Formation of a water bridge across the lipid bilayer is the first stage of pore formation in molecular dynamic (MD) simulations of electroporation, suggesting that the intrusion of individual water molecules into the membrane interior is the initiation event in a sequence that leads to the formation of a conductive membrane pore. To delineate more clearly the role of water in membrane permeabilization, we conducted extensive MD simulations of water bridge formation, stabilization, and collapse in palmitoyloleoylphosphatidylcholine bilayers and in water–vacuum–water systems, in which two groups of water molecules are separated by a 2.8 nm vacuum gap, a simple analog of a phospholipid bilayer. Certain features, such as the exponential decrease in water bridge initiation time with increased external electric field, are similar in both systems. Other features, such as the relationship between water bridge lifetime and the diameter of the water bridge, are quite different between the two systems. Data such as these contribute to a better and more quantitative understanding of the relative roles of water and lipid in membrane electropore creation and annihilation, facilitating a mechanism-driven development of electroporation protocols. These methods can be extended to more complex, heterogeneous systems that include membrane proteins and intracellular and extracellular membrane attachments, leading to more accurate models of living cells in electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berendsen HJC, Postma JPM, van Gunsteren WF (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

    Chapter  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Böckmann RA, de Groot BL, Kakorin S et al (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850

    Article  PubMed Central  PubMed  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  • DeBruin KA, Krassowska W (1999) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 77:1213–1224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz MD et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Fernández ML, Marshall G, Sagués F et al (2010) Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J Phys Chem B 114:6855–6865

    Article  PubMed  Google Scholar 

  • Fernández ML, Risk M, Reigada R et al (2012) Size-controlled nanopores in lipid membranes with stabilizing electric fields. Biochem Biophys Res Commun 423:325–330

    Article  PubMed  Google Scholar 

  • Heller LC, Heller R (2006) In vivo electroporation for gene therapy. Hum Gene Ther 17:890–897

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D et al (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Koronkiewicz S, Kalinowski S, Bryl K (2002) Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes. Biochim Biophys Acta 1561:222–229

    Article  CAS  PubMed  Google Scholar 

  • Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36

    Article  CAS  PubMed  Google Scholar 

  • Levine ZA, Vernier PT (2012) Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime. J Membr Biol 245:599–610

    Article  CAS  PubMed  Google Scholar 

  • Mir LM, Morsli N, Garbay JR et al (2003) Electrochemotherapy: a new treatment of solid tumors. J Exp Clin Cancer Res 22(4 Suppl):145–148

    CAS  PubMed  Google Scholar 

  • Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phy Rev E 59:3471–3482

    Article  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y et al (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okuno Y, Minagawa M, Matsumoto H et al (2009) Simulation study on the influence of an electric field on water evaporation. J Mol Struct (Theochem) 904:83–90

    Article  CAS  Google Scholar 

  • Piggot TJ, Holdbrook DA, Khalid S (2011) Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B 115:13381–13388

    Article  CAS  PubMed  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta 1724:270–280

    Article  CAS  PubMed  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Vernier PT, Ziegler MJ (2007) Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J Phys Chem B 111:12993–12996

    Article  CAS  PubMed  Google Scholar 

  • Vernier PT, Levine ZA, Gundersen MA (2013) Water bridges in electropermeabilized phospholipid bilayers. Proc IEEE 101:494–504

    Article  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chak Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, MC., Levine, Z.A. & Vernier, P.T. Nanoscale, Electric Field-Driven Water Bridges in Vacuum Gaps and Lipid Bilayers. J Membrane Biol 246, 793–801 (2013). https://doi.org/10.1007/s00232-013-9549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9549-4

Keywords

Navigation