Skip to main content
Log in

Effects of Weak Environmental Magnetic Fields on the Spontaneous Bioelectrical Activity of Snail Neurons

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We examined the effects of 50-Hz magnetic fields in the range of flux densities relevant to our current environmental exposures on action potential (AP), after-hyperpolarization potential (AHP) and neuronal excitability in neurons of land snails, Helix aspersa. It was shown that when the neurons were exposed to magnetic field at the various flux densities, marked changes in neuronal excitability, AP firing frequency and AHP amplitude were seen. These effects seemed to be related to the intensity, type (single and continuous or repeated and cumulative) and length of exposure (18 or 20 min). The extremely low-frequency (ELF) magnetic field exposures affect the excitability of F1 neuronal cells in a nonmonotonic manner, disrupting their normal characteristic and synchronized firing patterns by interfering with the cell membrane electrophysiological properties. Our results could explain one of the mechanisms and sites of action of ELF magnetic fields. A possible explanation of the inhibitory effects of magnetic fields could be a decrease in Ca2+ influx through inhibition of voltage-gated Ca2+ channels. The detailed mechanism of effect, however, needs to be further studied under voltage-clamp conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adey WR (1988) Electromagnetic fields, the modulation of brain tissue function: a possible paradigm shift in biology. In: International encyclopedia of neuroscience, 3rd ed. Elsevier, New York. http://www.emrnetwork.org/research/adey_encrneuro_emfs.pdf

  • Azanza MJ (1989) Steady magnetic fields mimic the effect of caffeine on neurons. Brain Res 489:195–198

    Article  PubMed  CAS  Google Scholar 

  • Azanza MJ, Del Moral A (1994) Cell membrane biochemistry and neurobiological approach to biomagnetism. Prog Neurobiol 44:517–601

    Article  PubMed  CAS  Google Scholar 

  • Bal R, Janahmadi M, Green GG, Sanders DJ (2000) Effect of calcium and calcium channel blockers on transient outward current of F76 and D1 neuronal soma membranes in the subesophageal ganglia of Helix aspersa. J Membr Biol 173:179–185

    Article  PubMed  CAS  Google Scholar 

  • Baureus Koch CL, Sommarin M, Persson BR, Salford LG, Eberhardt JL (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402

    Article  PubMed  CAS  Google Scholar 

  • Bawin SM, Adey WR (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci USA 73:1999–2003

    Article  PubMed  CAS  Google Scholar 

  • Bawin SM, Adey WR, Sabbot IM (1978) Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proc Natl Acad Sci USA 75:6314–6318

    Article  PubMed  CAS  Google Scholar 

  • Belova NA, Lednev VV (2001) Effects of extremely weak alternating magnetic fields on the plant gravitropism. Biofizika 46:122–125

    PubMed  CAS  Google Scholar 

  • Bennett BD, Callaway JC, Wilson CJ (2000) Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci 20:8493–8503

    PubMed  CAS  Google Scholar 

  • Blackman CF, Benane SG, House DE, Joines WT (1985a) Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:1–11

    Article  PubMed  CAS  Google Scholar 

  • Blackman CF, Benane SG, Rabinowitz JR, House DE, Joines WT (1985b) A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:327–337

    Article  PubMed  CAS  Google Scholar 

  • Blackman CF, Benane SG, House DE (2001) The influence of 1.2 microT, 60 Hz magnetic fields on melatonin- and tamoxifen-induced inhibition of MCF-7 cell growth. Bioelectromagnetics 22:122–128

    Article  PubMed  CAS  Google Scholar 

  • Borst JG, Sakmann B (1999) Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philos Trans R Soc Lond B Biol Sci 354:347–355

    Article  PubMed  CAS  Google Scholar 

  • Calvo AC, Azanza MJ (1999) Synaptic neurone activity under applied 50 Hz alternating magnetic fields. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 124:99–107

    Article  PubMed  CAS  Google Scholar 

  • Calvo AC, Azanza MJ (2000) Snail neuron bioelectric activity induced under static or sinusoidal magnetic fields reproduces mammal neuron responses under transcranial magnetic stimulation. Electromagn Biol Med 19:303–319

    Article  Google Scholar 

  • Crest M, Gola M (1993) Large conductance Ca2+-activated K+ channels are involved in both spike shaping and firing regulation in Helix neurones. J Physiol 465:265–287

    PubMed  CAS  Google Scholar 

  • Faber ES, Sah P (2002) Physiological role of calcium-activated potassium currents in the rat lateral amygdala. J Neurosci 22:1618–1628

    PubMed  CAS  Google Scholar 

  • Farndale RW, Maroudas A, Marsland TP (1987) Effects of low-amplitude pulsed magnetic fields on cellular ion transport. Bioelectromagnetics 8:119–134

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JA, Wilson CJ (2005) Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J Neurosci 25:10230–10238

    Article  PubMed  CAS  Google Scholar 

  • Hermann A, Erxleben C (1987) Charybdotoxin selectively blocks small Ca-activated K channels in Aplysia neurons. J Gen Physiol 90:27–47

    Article  PubMed  CAS  Google Scholar 

  • ICNIRP (2001) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (0 Hz–300 GHz). E.D. International Commission on Non-ionizing Radiation Protection, Gothenburg. http://www.icnirp.de

  • Juutilainen J, Laara E, Saali K (1987) Relationship between field strength and abnormal development in chick embryos exposed to 50 Hz magnetic fields. Int J Radiat Biol Relat Stud Phys Chem Med 52:787–793

    Article  PubMed  CAS  Google Scholar 

  • Kaviani Moghadam M, Firoozabadi M, Janahmadi M (2008) 50 Hz alternating extremely low frequency magnetic fields affect excitability, firing and action potential shape through interaction with ionic channels in snail neurones. Environmentalist 28:341–347

    Article  Google Scholar 

  • Kawai T, Watanabe M (1986) Blockade of Ca-activated K conductance by apamin in rat sympathetic neurones. Br J Pharmacol 87:225–232

    PubMed  CAS  Google Scholar 

  • Kerkut GA, Lambert JD, Gayton RJ, Loker JE, Walder RJ (1975) Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comp Biochem Physiol A Comp Physiol 50:1–25

    Article  PubMed  CAS  Google Scholar 

  • Levallois P, Gauvin D, Gingras S, St-Laurent J (1999) Comparison between personal exposure to 60 Hz magnetic fields and stationary home measurements for people living near and away from a 735 kV power line. Bioelectromagnetics 20:331–337

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom E, Lindstrom P, Berglund A, Lundgren E, Mild KH (1995) Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16:41–47

    Article  PubMed  CAS  Google Scholar 

  • Luben RA, Cain CD, Chen MC, Rosen DM, Adey WR (1982) Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proc Natl Acad Sci USA 79:4180–4184

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Nicoll RA (1986) Cyclic adenosine 3′,5′-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J Physiol 372:245–259

    PubMed  CAS  Google Scholar 

  • Markov SM (2004) Myosin phosphorylation—a plausible tool for studying “biological window.” In: 3rd international workshop of biological effects of electromagnetic fields, Kos, Greece, 4–8 October, pp 1–9

  • Mathie A, Kennard LE, Veale EL (2003) Neuronal ion channels and their sensitivity to extremely low frequency weak electric field effects. Radiat Prot Dosim 106:311–316

    CAS  Google Scholar 

  • McLean MJ, Holcomb RR, Wamil AW, Pickett JD, Cavopol AV (1995) Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range. Bioelectromagnetics 16:20–32

    Article  PubMed  CAS  Google Scholar 

  • NIEHS (2002a) EMF basics. National Institute of Environmental Health Sciences–National Institutes of Health, Bethesda. http://www.niehs.nih.gov/oc/news/emffin.htm

  • NIEHS (2002b) EMF reviews. National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda. http://www.niehs.nih.gov/oc/news/emffin.htm

  • Nikolic L, Kartelija G, Nedeljkovic M (2008) Effect of static magnetic fields on bioelectric properties of the Br and N1 neurons of snail Helix pomatia. Comp Biochem Physiol A Mol Integr Physiol 151:657–663

    Article  PubMed  Google Scholar 

  • Novikov GV, Novikov VV, Fesenko EE (2009) Effect of weak combined static and low-frequency alternating magnetic fields on the Ehrlich ascites carcinoma in mice (in Russian). Biofizika 54:1120–1127

    PubMed  CAS  Google Scholar 

  • Sakakibara M, Okuda F, Nomura K, Watanabe K, Meng H, Horikoshi T, Lukowiak K (2005) Potassium currents in isolated statocyst neurons and RPeD1 in the pond snail, Lymnaea stagnalis. J Neurophysiol 94:3884–3892

    Article  PubMed  CAS  Google Scholar 

  • Solntseva EI (1995) Properties of slow early potassium current in neurons of snail Helix pomatia. Gen Pharmacol 26:1719–1726

    PubMed  CAS  Google Scholar 

  • Thompson SH (1977) Three pharmacologically distinct potassium channels in molluscan neurones. J Physiol 265:465–488

    PubMed  CAS  Google Scholar 

  • Vatanparast J, Janahmadi M (2009) Contribution of apamin-sensitive SK channels to the firing precision but not to the slow after hyperpolarization and spike frequency adaptation in snail neurons. Brain Res 1255:57–66

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Seema Rosqvist for critical reading of the manuscript. This work was supported by a grant from the Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Firoozabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghadam, M.K., Firoozabadi, M. & Janahmadi, M. Effects of Weak Environmental Magnetic Fields on the Spontaneous Bioelectrical Activity of Snail Neurons. J Membrane Biol 240, 63–71 (2011). https://doi.org/10.1007/s00232-011-9344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9344-z

Keywords

Navigation