Skip to main content

Advertisement

Log in

Distribution of Several Activating and Inhibitory Receptors on CD3CD16+ NK Cells and Their Correlation with NK Cell Function in Healthy Individuals

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The aim of this study was to estimate the distribution and density of a representative set of activating and inhibitory receptors on gated natural killer (NK) cells, as well as on their bright and dim subsets, and to correlate the receptor expression with NK cell activity for healthy individuals on CD3CD16+ NK cells. We show that in 43 healthy controls NK cell activity against K562 target cells was 37.34% (E:T, 80:1) by standard chromium release assay. The expression of receptors on NK cells and their subsets was analyzed by flow cytometry. The cytotoxic CD3CD16bright NK subset constituted 78.97%, while the regulatory CD3CD16dim NK subset constituted 21.03% of NK cells. We show the distribution of NKG2D, CD161, CD158a, and CD158b receptors on CD3CD16+ NK cells in peripheral blood lymphocytes (PBLs), on gated NK cells, and on the CD3CD16bright and CD3CD16dim subsets. Contrary to CD158a and CD158b killer immunoglobulin-like receptors (KIRs), there is a significant positive correlation of NKG2D and CD161 expression with NK cytotoxicity. We show the kinetics of change in CD3CD16+NK/K562 conjugate composition, together with the stronger target binding capacity of CD16bright NK cells. Furthermore, we show that after coculture of PBLs with K562 the expression of CD107a, a degranulation marker, on CD3CD16+NK cells and subsets is time dependent and significantly higher on the cytotoxic CD3CD16bright NK subset. The novel data obtained regarding expression of NK cell activating and inhibitory receptors for healthy individuals may aid in detecting changes that are associated with various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldemir H, Prod’homme V, Dumaurier MJ, Retiere C, Poupon G, Cazareth J, Bihl F, Braud VM (2005) Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J Immunol 175:7791–7795

    PubMed  CAS  Google Scholar 

  • Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:15–22

    Article  PubMed  CAS  Google Scholar 

  • Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT, Streeck H, Johnston MN, Staller KD, Zaman MT, Yu XG, Lichterfeld M, Basgoz N, Rosenberg ES, Altfeld M (2005) Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106:3366–3369

    Article  PubMed  CAS  Google Scholar 

  • André P, Castriconi R, Espéli M, Anfossi N, Juarez T, Hue S, Conway H, Romagné F, Dondero A, Nanni M, Caillat-Zucman S, Raulet DH, Bottino C, Vivier E, Moretta A, Andre PP (2004) Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol 34:961–971

    Article  PubMed  Google Scholar 

  • Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagne F, Ugolini S, Vivier E (2006) Human NK cell education by inhibitory receptors for MHC class. Immunity 25:331–342

    Article  PubMed  CAS  Google Scholar 

  • Azzoni L, Zatsepina O, Abebe B, Bennett IM, Kanakaraj P, Perussia B (1998) Differential transcriptional regulation of CD161 and a novel gene, 197/15a, by IL-2, IL-15, and IL-12 in NK and T cells. J Immunol 161:3493–3500

    PubMed  CAS  Google Scholar 

  • Bennett IM, Zatsepina O, Zamai L, Azzoni L, Mikheeva T, Perussia B (1996) Definition of a natural killer NKR-P1A +/CD56−/CD16− functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J Exp Med 184:1845–1856

    Article  PubMed  CAS  Google Scholar 

  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    Article  PubMed  CAS  Google Scholar 

  • Boyton RJ, Altmann DM (2007) Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clin Exp Immunol 149:1–8

    PubMed  CAS  Google Scholar 

  • Brown RL, Ortaldo JR, Griffith RL, Blanca I, Rabin H (1985) The proliferation and function of human mononuclear leukocytes and natural killer cells in serum-free medium. J Immunol Methods 81:207–214

    Article  PubMed  CAS  Google Scholar 

  • Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO (2005) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Cooper MA, Fehniger TA, Caligiuri MA (2001a) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    Article  PubMed  CAS  Google Scholar 

  • Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA (2001b) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97:3146–3151

    Article  PubMed  CAS  Google Scholar 

  • Di Santo JP (2006) Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24:257–286

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach A, Hsia JK, Hsiung MY, Raulet DH (2003) A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol 33:381–391

    Article  PubMed  CAS  Google Scholar 

  • Epling-Burnette PK, Painter JS, Chaurasia P, Bai F, Wei S, Djeu JY, Loughran TP Jr (2004) Dysregulated NK receptor expression in patients with lymphoproliferative disease of granular lymphocytes. Blood 103:3431–3439

    Article  PubMed  CAS  Google Scholar 

  • Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20:123–137

    Article  PubMed  CAS  Google Scholar 

  • Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH (2005) A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105:4416–4423

    Article  PubMed  CAS  Google Scholar 

  • Gasser S, Raulet DH (2006) Activation and self-tolerance of natural killer cells. Immunol Rev 214:130–142

    Article  PubMed  CAS  Google Scholar 

  • Gazit R, Garty BZ, Monselise Y, Hoffer V, Finkelstein Y, Markel G, Katz G, Hanna J, Achdout H, Gruda R, Gonen-Gross T, Mandelboim O (2004) Expression of KIR2DL1 on the entire NK cell population: a possible novel immunodeficiency syndrome. Blood 103:1965–1966

    Article  PubMed  CAS  Google Scholar 

  • Gryzwacz B, Kataria N, Verneris MR (2007) CD56dimCD16 + NK cells downregulate CD16 following target cell induced activation of matrix metaloprteinases. Letter to the Editor. Leukemia 21:356–359

    Google Scholar 

  • Izumi Y, Ida H, Huang M, Iwanaga N, Tanaka F, Aratake K, Arima K, Tamai M, Kamachi M, Nakamura H, Origuchi T, Kawakami A, Anderson P, Eguchi K (2006) Characterization of peripheral natural killer cells in primary Sjögren’s syndrome: impaired NK cell activity and low NK cell number. J Lab Clin Med 147:242–249

    Article  PubMed  CAS  Google Scholar 

  • Jackson A, Warner N (1986) Preparation, staining and analysis by flow cytometry of peripheral blood leukocytes. In: Rose N, Friedman H, Fahey J (eds) Manual of clinical laboratory immunology, 3rd edn. American Society for Microbiology, Washington, DC, pp 226–235

    Google Scholar 

  • Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, Behrens G, Sykora KW, Schmidt RE (2001) CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 31:3121–3127

    Article  PubMed  CAS  Google Scholar 

  • Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117

    Article  PubMed  CAS  Google Scholar 

  • Kogure T, Fujinaga H, Niizawa A, Hai LX, Shimada Y, Ochiai H, Terasawa K (1999) Killer-cell inhibitory receptors, CD158a/b, are upregulated by interleukin-2, but not interferon-gamma or interleukin-4. Mediators Inflamm 8:313–318

    Article  PubMed  CAS  Google Scholar 

  • Kogure T, Mantani N, Sakai S, Shimada Y, Tamura J, Terasawa K (2003) Natural killer cytolytic activity is associated with the expression of killer cell immunoglobulin-like receptors on peripheral lymphocytes in human. Mediators Inflamm 12:117–121

    Article  PubMed  CAS  Google Scholar 

  • Konjević G, Schlesinger B, Cheng L, Olsen KJ, Podack ER, Spuzic I (1995) Analysis of perforin expression in human peripheral blood lymphocytes, CD56+ natural killer cell subsets and its induction by interleukin-2. Immunol Invest 24:499–507

    Article  PubMed  Google Scholar 

  • Konjević G, Jović V, Jurisić V, Radulović S, Jelić S, Spuzić I (2003) IL-2-mediated augmentation of NK-cell activity and activation antigen expression on NK- and T-cell subsets in patients with metastatic melanoma treated with interferon-alpha and DTIC. Clin Exp Metastasis 20:647–655

    Article  PubMed  Google Scholar 

  • Konjević G, Martinovi KM, Jurisi V, Babovi N, Spuzi I (2009) Biomarkers of suppressed natural killer (NK) cell function in metastatic melanoma: decreased NKG2D and increased CD158a receptors on CD3-CD16+ NK cells. Biomarkers 14:258–270

    Article  PubMed  Google Scholar 

  • Konjević G, Mirjacić Martinović K, Vuletić A, Jović V, Jurisić V, Babović N, Spuzić I (2007) Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clin Exp Metastasis 24:1–11

    Article  PubMed  Google Scholar 

  • Lanier LL (1998) NK cell receptors. Annu Rev Immunol 16:359

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL (2003) Natural killer cell receptor signaling. Curr Opin Immunol 15:308–314

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH (1986) The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136:4480–4486

    PubMed  CAS  Google Scholar 

  • Lima M, Teixeira MA, Queiros ML, Leite M, Santos AH, Justica B, Orfao A (2001) Immunophenotypic characterization of normal blood CD56 + lo versus CD56 + hi NK-cell subsets and its impact on the understanding of their tissue distribution and functional properties. Blood Cells Mol Dis 27:731–743

    Article  PubMed  CAS  Google Scholar 

  • Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904

    Article  PubMed  CAS  Google Scholar 

  • Mandelboim O, Malik P, Davis DM, Jo CH, Boyson JE, Strominger JL (1999) Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proc Natl Acad Sci USA 96:5640–5644

    Article  PubMed  CAS  Google Scholar 

  • Martin MP, Carrington M (2008) KIR locus polymorphisms: genotyping and disease association analysis. Methods Mol Biol 415:49–64

    Article  PubMed  CAS  Google Scholar 

  • Nagler A, Lanier LL, Cwirla S (1989) Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 143:3183–3191

    PubMed  CAS  Google Scholar 

  • Naumova E, Mihaylova A, Ivanova M, Mihailova S (2007) Impact of KIR/HLA ligand combinations on immune responses in malignant melanoma. Cancer Immunol Immunother 56:95–100

    Article  PubMed  CAS  Google Scholar 

  • Pascal V, Schleinitz N, Brunet C, Ravet S, Bonnet E, Lafarge X, Touinssi M, Reviron D, Viallard JF, Moreau JF, Déchanet-Merville J, Blanco P, Harlé JR, Sampol J, Vivier E, Dignat-George F, Paul P (2004) Comparative analysis of NK cell subset distribution in normal and lymphoproliferative disease of granular lymphocyte conditions. Eur J Immunol 34:2930–2940

    Article  PubMed  CAS  Google Scholar 

  • Penack O, Gentilini C, Fischer L, Asemissen AM, Scheibenbogen C, Thiel E, Uharek L (2005) CD56dimCD16neg cells are responsible for natural cytotoxicity against tumor targets. Leukemia 19:835–840

    Article  PubMed  CAS  Google Scholar 

  • Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    Article  PubMed  CAS  Google Scholar 

  • Raulet DH (2006) Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol. 18:145–150

    Article  PubMed  CAS  Google Scholar 

  • Raulet DH, Vance RE, McMahon CW (2001) Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 19:291–330

    Article  PubMed  CAS  Google Scholar 

  • Robertson MJ, Ritz J (1990) Biology and relevance of human natural killer cells. Blood 76:2421–2438

    PubMed  CAS  Google Scholar 

  • Rosen DB, Bettadapura J, Alsharifi M, Warren Mathew PA, HS Lanier LL (2005) Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol 175:7796–7799

    PubMed  CAS  Google Scholar 

  • Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, Lee PP (2003) Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 9:1377–1382

    Article  PubMed  CAS  Google Scholar 

  • Sun PD (2003) Structure and function of natural-killer-cell receptors. Immunol Res 27:539–548

    Article  PubMed  CAS  Google Scholar 

  • Takahashi E, Kuranaga N, Satoh K, Habu Y, Shinomiya N, Asano T, Seki S, Hayakawa M (2007) Induction of CD16+ CD56bright NK cells with antitumour cytotoxicity not only from CD16− CD56bright NK Cells but also from CD16− CD56dim NK cells. Scand J Immunol 65:126–138

    Article  PubMed  CAS  Google Scholar 

  • Tarazona R, Casado JG, Delarosa O, Torre-Cisneros J, Villanueva JL, Sanchez B, Galiani MD, Gonzalez R, Solana R, Peña J (2002) Selective depletion of CD56(dim) NK cell subsets and maintenance of CD56(bright) NK cells in treatment-naive HIV-1-seropositive individuals. J Clin Immunol 22:176–183

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  PubMed  CAS  Google Scholar 

  • Trowsdale J, Parham P (2004) Mini-review: defense strategies and immunity-related genes. Eur J Immunol 34:7–17

    Article  PubMed  CAS  Google Scholar 

  • Trzonkowski P, Szmit E, Myśliwska J, Dobyszuk A, Myśliwski A (2004) CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol 112(3):258–267

    Article  PubMed  CAS  Google Scholar 

  • Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, Tyan D, Lanier LL, Parham P (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7:753–763

    Article  PubMed  CAS  Google Scholar 

  • Vitale M, Zamai L, Neri LM, Manzoli L, Facchini A, Papa S (1991) Natural killer function in flow cytometry: identification of human lymphoid subsets able to bind to the NK sensitive target K562. Cytometry 12(8):717–722

    Article  PubMed  CAS  Google Scholar 

  • Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science 306:1517–1519

    Article  PubMed  CAS  Google Scholar 

  • Warren HS, Kinnear BF (1999) Quantitative analysis of the effect of CD16 ligation on human NK cell proliferation. J Immunol 162:735–742

    PubMed  CAS  Google Scholar 

  • Warren HS, Skipsey LJ (1991) Phenotypic analysis of a resting subpopulation of human peripheral blood NK cells: the FcR gamma III (CD16) molecule and NK cell differentiation. Immunology 72:150–157

    PubMed  CAS  Google Scholar 

  • Watzl C, Long EO (2003) Natural killer cell inhibitory receptors block actin cytoskeleton-dependent recruitment of 2B4 (CD244) to lipid rafts. J Exp Med 197:77–85

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732

    Article  PubMed  CAS  Google Scholar 

  • Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P (2006) Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med 203:633–645

    Article  PubMed  CAS  Google Scholar 

  • Yoon SR, Chung JW, Choi I (2007) Development of natural killer cells from hematopoietic stem cells. Mol Cells 24:1–8

    PubMed  CAS  Google Scholar 

  • Zambello R, Falco M, Della Chiesa M, Trentin L, Carollo D, Castriconi R, Cannas G, Carlomagno S, Cabrelle A, Lamy T, Agostini C, Moretta A, Semenzato G, Vitale M (2003) Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes. Blood 102:1797–1805

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant 145056 from the Ministry of Science and Technology of the Republic of Serbia. We wish to thank Mrs. Jasna Popović Basić and Mrs. Miroslava Ćulafić for their help and excellent technical work. We are grateful to Mrs. Dušica Gavrilović for statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Konjević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konjević, G., Mirjačić Martinović, K., Vuletić, A. et al. Distribution of Several Activating and Inhibitory Receptors on CD3CD16+ NK Cells and Their Correlation with NK Cell Function in Healthy Individuals. J Membrane Biol 230, 113–123 (2009). https://doi.org/10.1007/s00232-009-9191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9191-3

Keywords

Navigation