Skip to main content
Log in

Modulation of Erythrocyte Acetylcholinesterase Activity and Its Association with G Protein-Band 3 Interactions

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Circulating acetylcholine, substrate of membrane acetylcholinesterase (AChE), is known to enhance the band 3 protein degree of phosphorylation. The purpose of this study was to verify whether the band 3 phosphorylation status is associated with a G protein and whether it is an influent factor on AChE enzyme activity. From blood samples of healthy donors, erythrocyte suspensions were prepared and incubated with AChE substrate (acetylcholine) and inhibitor (velnacrine), along with protein tyrosine kinase (PTK) and tyrosine phosphatase (PTP) inhibitors. AChE activity was determined by spectrophotometry and extract samples were analyzed by western blotting using primary antibodies to different G protein subunits. Our results with phosphorylated band 3 (PTP inhibitor) show an increase in erythrocyte AChE (p < 0.0001). A dephosphorylated band 3 state (PTK inhibitor) shows a significant decrease. We identified a potential linkage of protein subunits Gαi1/2 and Gβ with band 3 protein. Gαi1/2 and Gβ may be linked to the band 3 C-terminal site. Gαi1/2 is associated with the band 3 N-terminal domain, except for the control and ACh aliquots. Gβ is associated with both phosphorylated and dephosphorylated band 3 in the presence of velnacrine. We conclude that an erythrocyte G protein with subunits Gαi1/2 and Gβ is associated with band 3. AChE depends on the degree of band 3 phosphorylation and its association with Gαi1/2 and Gβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida JP, Carvalho F, Martins-Silva J, Saldanha C (2006a) The influence of erythrocyte acetylcholinesterase effectors in the band 3-dependent mobilization of intracellular nitric oxide stores. J Vasc Res 43(Suppl 1):2–94 [abstract]

    Google Scholar 

  • Almeida JP, Carvalho FA, Martins-Silva J, Saldanha C (2006b) Acetylcholine-dependent modulation of human erythrocyte hemorheological properties—an in vitro study. Eur J Med Res 11(Suppl II):1–156 [abstract]

    Google Scholar 

  • Anong WA, Weis TL, Low PS (2006) Rate of rupture and reattachment of the band 3-ankyrin bridge on the human erythrocyte membrane. J Biol Chem 281:22360–22366

    Article  PubMed  CAS  Google Scholar 

  • Bordin L, Clari G, Moro I, Vecchia FD, Moret V (1995) Functional link between phosphorylation state of membrane proteins and morphological changes of human erythrocytes. Biochem Biophys Res Commun 213:249–257

    Article  PubMed  CAS  Google Scholar 

  • Bordin L, Brunati AM, Donella-Deana A, Baggio B, Toninello A, Clari G (2002) Band 3 is an anchor protein and a target for SHP-2 tyrosine phosphatase in human erythrocytes. Blood 100:276–282

    Article  PubMed  CAS  Google Scholar 

  • Bordin L, Ion-Popa F, Brunati AM, Clari G, Low PS (2005) Effector-induced Syk-mediated phosphorylation in human erythrocytes. Biochim Biophys Acta 1745:20–28

    Article  PubMed  CAS  Google Scholar 

  • Brunati AM, Bordin L, Clari G, Moret V (1996) The Lyn-catalyzed Tyr phosphorylation of the transmembrane band-3 protein of human erythrocytes. Eur J Biochem 240:394–399

    Article  PubMed  CAS  Google Scholar 

  • Brunati AM, Bordin L, Clari G, James P, Quadroni M, Baritono E, Pinna LA, Donella-Deana A (2000) Sequential phosphorylation of protein band 3 by Syk and Lyn tyrosine kinases in intact human erythrocytes: identification of primary and secondary phosphorylation sites. Blood 96:1550–1557

    PubMed  CAS  Google Scholar 

  • Campanella ME, Chu H, Low PS (2005) Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad Sci USA 102:2402–2407

    Article  PubMed  CAS  Google Scholar 

  • Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C (2004) Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J App Toxicol 24:419–427

    Article  CAS  Google Scholar 

  • Carvalho FA, Almeida JP, Fernandes IO, Freitas-Santos T, Saldanha C (2008) Non-neuronal cholinergic system and signal transduction pathways mediated by band 3 in red blood cells. Clin Hemorheol Microcirc 40:207–227

    PubMed  CAS  Google Scholar 

  • Chu H, Low PS (2006) Mapping of glycolytic enzyme-binding sites on human erythrocyte band 3. Biochem J 400:143–151

    Article  PubMed  CAS  Google Scholar 

  • Corbett JD, Cho MR, Golan DE (1994) Deoxygenation affects fluorescence photobleaching recovery measurements of red cell membrane protein lateral mobility. Biophys J 66:25–30

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Escribá PV, Sánchez-Dominguez JM, Alemany R, Perona JS, Ruiz-Gutiérrez V (2003) Alteration of lipids, G proteins, and PKC in cell membranes of elderly hypertensives. Hypertension 41:176–182

    Article  PubMed  Google Scholar 

  • Gutierrez E, Sung LA (2007) Interactions of recombinant mouse erythrocyte transglutaminase with membrane skeletal proteins. J Membr Biol 219:93–104

    Article  PubMed  CAS  Google Scholar 

  • Hsia JA, Moss J, Hewlett EL, Vaughan M (1984) ADP-ribosylation of adenylate cyclase by pertussis toxin. Effects on inhibitory agonist binding. J Biol Chem 259:1086–1090

    PubMed  CAS  Google Scholar 

  • Iyengar R, Rich KA, Herberg JT, Grenet D, Mumby S, Codina J (1987) Identification of a new GTP-binding protein. J Biol Chem 262:9239–9245

    PubMed  CAS  Google Scholar 

  • Kaplan E, Herg F, Hsu KS (1964) Erythrocyte acetylcholinesterase activity in ABO haemolytic disease of the newborn. Pediatrics 33:205–211

    PubMed  CAS  Google Scholar 

  • Kawashima K, Fujii T (2000) Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 86:29–48

    Article  PubMed  CAS  Google Scholar 

  • Mesquita R, Saldanha C, Martins-Silva J (2000) Nitric oxide release by erythrocytes is increased by acetylcholinesterase inhibitors. In: Moncada S, Gustafssen L, Wikluvd N, Higgs E (eds) The biology of nitric oxide. Part 7. Portland Press, London, 76 p

  • Mesquita R, Pires I, Saldanha C, Martins-Silva J (2001) Effects of acetylcholine and spermineNONOate on erythrocyte hemorheologic and oxygen carrying properties. Clin Hemorheol Microcirc 25:153–163

    PubMed  CAS  Google Scholar 

  • Minetti G, Ciana A (2003) New and old integral proteins of the human erythrocyte membrane. Blood 101:3751

    Article  PubMed  CAS  Google Scholar 

  • Minetti G, Ciana A, Balduini C (2004) Differential sorting of tyrosine kinase and phosphotyrosine phosphatase acting on band 3 vesiculation of human erythrocytes. Biochem J 377:489–497

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Stanley SJ, Burns DL, Hsia JA, Yost DA, Myers GA, Hewlett EL (1983) Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein). J Biol Chem 258:11879–11882

    PubMed  CAS  Google Scholar 

  • Olearczyk JJ, Stephenson AH, Lonigro AJ, Sprague RS (2004a) NO inhibits signal transduction pathway for ATP release from erythrocytes via its action on heterotrimeric G protein Gi. Am J Physiol Heart Circ Physiol 287:H748–H754

    Article  PubMed  CAS  Google Scholar 

  • Olearczyk JJ, Stephenson AH, Lonigro AJ, Sprague RS (2004b) Heterotrimeric G protein Gi is involved in a signal transduction pathway for ATP release from erythrocytes. Am J Physiol Heart Circ Physiol 286:940–945

    Article  Google Scholar 

  • Saldanha C (1985) Acetylcholinesterase. Contribution for the kinetic study of the human erythrocyte enzyme. Ph.D. thesis (in Portuguese)

  • Saldanha C, Santos NC, Martins-Silva J (2002) Fluorescent probes DPH, TMA-DPH and C17-HC induce erythrocyte exovesiculation. J Membr Biol 190:75–82

    Article  PubMed  CAS  Google Scholar 

  • Saldanha C, Silva AS, Gonçalves S, Martins-Silva J (2007) Modulation of erythrocyte hemorheological properties by band 3 phosphorylation and dephosphorylation. Clin Hemorheol Microcirc 36:183–194

    PubMed  CAS  Google Scholar 

  • Santos NC, Figueira-Coelho J, Saldanha C, Martins-Silva J (2002) Biochemical, biophysical and haemorheological effects of dimethylsulphoxide on human erythrocyte calcium loading. Cell Calcium 31:183–188

    Article  PubMed  CAS  Google Scholar 

  • Santos T, Mesquita R, Martins-Silva J, Saldanha C (2003) Effects of choline on hemorheological properties and NO metabolism of human erythrocytes. Clin Hemorheol Microcirc 29:41–51

    PubMed  CAS  Google Scholar 

  • Sastry BVR, Sadavongvivad C (1979) Cholinergic systems in non-nervous tissues. Pharmacol Rev 30:65–132

    Google Scholar 

  • Tracey KJ (2002) The inflammatory reflex. Nature 120:853–859

    Article  Google Scholar 

  • Wang CC, Tao M, Wei T, Low PS (1997) Identification of the major casein kinase I phosphorylation sites on erythrocyte band 3. Blood 89:3019–3024

    PubMed  CAS  Google Scholar 

  • Wessler IK, Kirkpatrick CJ (2001) The non-neuronal cholinergic system: an emerging drug target in the airways. Pulm Pharmacol Ther 14:423–434

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ, Racke K (1998) Non-neuronal acetylcholine, a locally acting molecule widely distributed in biological systems: expression and function in humans. Pharmacol Ther 77:59–79

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ, Racke K (1999) The cholinergic ‘pitfall’: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharmacol Physiol 26:198–205

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Kilbinger H, Bittinger F, Unger R, Kirkpatrick CJ (2003) The non-neuronal cholinergic system in humans: expression, function and pathophysiology. Life Sci 72:2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Wright DL, Plummer DT (1973) Multiple forms of acetylcholinesterase from human erythrocytes. Biochem J 133:521–527

    PubMed  CAS  Google Scholar 

  • Zabala L, Saldanha C, Martins-Silva J, Souza-Ramalho P (1999) Red blood cell membrane integrity in primary open angle glaucoma: ex vivo and in vitro studies. Eye 13:101–103

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Lopes de Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, F.A., de Almeida, J.P.L., Freitas-Santos, T. et al. Modulation of Erythrocyte Acetylcholinesterase Activity and Its Association with G Protein-Band 3 Interactions. J Membrane Biol 228, 89–97 (2009). https://doi.org/10.1007/s00232-009-9162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9162-8

Keywords

Navigation