Skip to main content
Log in

Evidence for the Transport of Maltose by the Sucrose Permease, CscB, of Escherichia coli

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the sugar recognition and transport properties of the sucrose permease (CscB), a secondary active transporter from Escherichia coli. We tested the hypothesis that maltose transport is conferred by the wild-type CscB transporter. Cells of E. coli HS4006 harboring pSP72/cscB were red on maltose MacConkey agar indicator plates. We were able to measure “downhill” maltose transport and establish definitive kinetic behavior for maltose entry in such cells. Maltose was an effective competitor of sucrose transport in cells with CscB, suggesting that the respective maltose and sucrose binding sites and translocation pathways through the CscB channel overlap. Accumulation (“uphill” transport) of maltose by cells with CscB was profound, demonstrating active transport of maltose by CscB. Sequencing of cscB encoded on plasmid pSP72/cscB used in cells for transport studies indicate an unaltered primary CscB structure, ruling out the possibility that mutation conferred maltose transport by CscB. We conclude that maltose is a bona fide substrate for the sucrose permease of E. coli. Thus, future studies of sugar binding, transport, and permease structure should consider maltose, as well as sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  PubMed  CAS  Google Scholar 

  • Abramson J, Iwata S, Kaback HR (2004) Lactose permease as a paradigm for membrane transport proteins (Review). Mol Membr Biol 21:227–236

    Article  PubMed  CAS  Google Scholar 

  • Alaeddinoglu NG, Charles HP (1979) Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for d-serine utilization. J Gen Microbiol 110:47–59

    PubMed  CAS  Google Scholar 

  • Aslanidis C, Schmid K, Schmitt R (1989) Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli. J Bacteriol 171:6753–6763

    PubMed  CAS  Google Scholar 

  • Baldwin SA, Henderson PJ (1989) Homologies between sugar transporters from eukaryotes and prokaryotes. Annu Rev Physiol 51:459–471

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  PubMed  CAS  Google Scholar 

  • Bockmann J, Heuel H, Lengeler JW (1992) Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Mol Gen Genet 235:22–32

    Article  PubMed  CAS  Google Scholar 

  • Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62:204–229

    PubMed  CAS  Google Scholar 

  • Brooker RJ, Wilson TH (1985a) Isolation and nucleotide sequencing of lactose carrier mutants that transport maltose. Proc Natl Acad Sci USA 82:3959–3963

    Article  PubMed  CAS  Google Scholar 

  • Brooker RJ, Wilson TH (1985b) Isolation, characterization, and nucleotide sequences of lactose permease mutants that have acquired the ability to transport maltose. Ann NY Acad Sci 456:350

    Article  PubMed  CAS  Google Scholar 

  • Brooker RJ, Fiebig K, Wilson TH (1985) Characterization of lactose carrier mutants which transport maltose. J Biol Chem 260:16181–16186

    PubMed  CAS  Google Scholar 

  • Brown GM, Levy HA (1963) Sucrose: precise determination of crystal and molecular structure by neutron diffraction. Science 141:921–923

    Article  PubMed  CAS  Google Scholar 

  • Büchel DE, Gronenborn B, Müller-Hill B (1980) Sequence of the lactose permease gene. Nature 283:541–545

    Article  PubMed  Google Scholar 

  • Collins JC, Permuth SF, Brooker RJ (1989) Isolation and characterization of lactose permease mutants with an enhanced recognition of maltose and diminished recognition of cellobiose. J Biol Chem 264:14698–14703

    PubMed  CAS  Google Scholar 

  • Davidson AL, Maloney PC (2007) ABC transporters: how small machines do a big job. Trends Microbiol 15:448–455

    Article  PubMed  CAS  Google Scholar 

  • Drozdowski LA, Thomson AB (2006) Intestinal sugar transport. World J Gastroenterol 12:1657–1670

    PubMed  CAS  Google Scholar 

  • Eelkema JA, O’Donnell MA, Brooker RJ (1991) An analysis of lactose permease “sugar specificity” mutations which also affect the coupling between proton and lactose transport. II. Second site revertants of the thiodigalactoside-dependent proton leak by the Val177/Asn319 permease. J Biol Chem 266:4139–4144

    PubMed  CAS  Google Scholar 

  • Felle H, Porter JS, Slayman CL, Kaback HR (1980) Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19:3585–3590

    Article  PubMed  CAS  Google Scholar 

  • Forst D, Welte W, Wacker T, Diederichs K (1998) Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Biol 5:37–46

    Article  PubMed  CAS  Google Scholar 

  • Franco PJ, Brooker RJ (1991) Evidence that the asparagine 322 mutant of the lactose permease transports protons and lactose with a normal stoichiometry and accumulates lactose against a concentration gradient. J Biol Chem 266:6693–6699

    PubMed  CAS  Google Scholar 

  • Franco PJ, Eelkema JA, Brooker RJ (1989) Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose. J Biol Chem 264:15988–15992

    PubMed  CAS  Google Scholar 

  • Frillingos S, Sahin-Toth M, Lengeler JW, Kaback HR (1995) Helix packing in the sucrose permease of Escherichia coli: properties of engineered charge pairs between helices VII and XI. Biochemistry 34:9368–9373

    Article  PubMed  CAS  Google Scholar 

  • Goswitz VC, Brooker RJ (1993) Isolation of lactose permease mutants which recognize arabinose. Membr Biochem 10:61–70

    Article  PubMed  CAS  Google Scholar 

  • Gram CD, Brooker RJ (1992) An analysis of the side chain requirement at position 177 within the lactose permease which confers the ability to recognize maltose. J Biol Chem 267:3841–3846

    PubMed  CAS  Google Scholar 

  • Griffith JK, Baker ME, Rouch DA, Page MG, Skurray RA, Paulsen IT, Chater KF, Baldwin SA, Henderson PJ (1992) Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol 4:684–695

    Article  PubMed  CAS  Google Scholar 

  • Guan L, Kaback HR (2006) Lessons from lactose permease. Annu Rev Biophys Biomol Struct 35:67–91

    Article  PubMed  CAS  Google Scholar 

  • Heller KB, Wilson TH (1979) Sucrose transport by the Escherichia coli lactose carrier. J Bacteriol 140:395–399

    PubMed  CAS  Google Scholar 

  • Holyoake J, Sansom MS (2007) Conformational change in an MFS protein: MD simulations of LacY. Structure 15:873–884

    Article  PubMed  CAS  Google Scholar 

  • Iyer R, Camilli A (2007) Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae. Mol Microbiol 66:1–13

    Article  PubMed  CAS  Google Scholar 

  • Jahreis K, Bentler L, Bockmann J, Hans S, Meyer A, Siepelmeyer J, Lengeler JW (2002) Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132. J Bacteriol 184:5307–5316

    Article  PubMed  CAS  Google Scholar 

  • Kasho VN, Smirnova IN, Kaback HR (2006) Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease. J Mol Biol 358:1060–1070

    Article  PubMed  CAS  Google Scholar 

  • King SC, Li S (1998) Suppressor scanning at positions 177 and 236 in the Escherichia coli lactose/H+ cotransporter and stereotypical effects of acidic substituents that suggest a favored orientation of transmembrane segments relative to the lipid bilayer. J Bacteriol 180:2756–2758

    PubMed  CAS  Google Scholar 

  • King SC, Wilson TH (1990) Identification of valine 177 as a mutation altering specificity for transport of sugars by the Escherichia coli lactose carrier. Enhanced specificity for sucrose and maltose. J Biol Chem 265:9638–9644

    PubMed  CAS  Google Scholar 

  • King SC, Hansen CL, Wilson TH (1991) The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. Biochim Biophys Acta 1062:177–186

    Article  PubMed  CAS  Google Scholar 

  • Krieg PA, Melton DA (1987) In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol 155:397–415

    Article  PubMed  CAS  Google Scholar 

  • Lee JI, Hwang PP, Hansen C, Wilson TH (1992) Possible salt bridges between transmembrane alpha-helices of the lactose carrier of Escherichia coli. J Biol Chem 267:20758–20764

    PubMed  CAS  Google Scholar 

  • Lee JI, Hwang PP, Wilson TH (1993) Lysine 319 interacts with both glutamic acid 269 and aspartic acid 240 in the lactose carrier of Escherichia coli. J Biol Chem 268:20007–20015

    PubMed  CAS  Google Scholar 

  • Lee JI, Okazaki N, Tsuchiya T, Wilson TH (1994) Cloning and sequencing of the gene for the lactose carrier of Citrobacter freundii. Biochem Biophys Res Commun 203:1882–1888

    Article  PubMed  CAS  Google Scholar 

  • Lee JI, Varela MF, Wilson TH (1996) Physiological evidence for an interaction between Glu-325 and His-322 in the lactose carrier of Escherichia coli. Biochim Biophys Acta 1278:111–118

    Article  PubMed  Google Scholar 

  • Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ (1987) Mammalian and bacterial sugar transport proteins are homologous. Nature 325:641–643

    Article  PubMed  CAS  Google Scholar 

  • Maloney PC (1994) Bacterial transporters. Curr Opin Cell Biol 6:571–582

    Article  PubMed  CAS  Google Scholar 

  • Marger MD, Saier MH Jr (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18:13–20

    Article  PubMed  CAS  Google Scholar 

  • Markgraf M, Bocklage H, Müller-Hill B (1985) A change of threonine 266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose. Mol Gen Genet 198:473–475

    Article  PubMed  CAS  Google Scholar 

  • McMorrow I, Chin DT, Fiebig K, Pierce JL, Wilson DM, Reeve EC, Wilson TH (1988) The lactose carrier of Klebsiella pneumoniae M5a1; the physiology of transport and the nucleotide sequence of the lacY gene. Biochim Biophys Acta 945:315–323

    Article  PubMed  CAS  Google Scholar 

  • Merino G, Shuman HA (1998) Truncation of MalF results in lactose transport via the maltose transport system of Escherichia coli. J Biol Chem 273:2435–2444

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1978) Transport functions of the outer membrane of enteric bacteria. Horiz Biochem Biophys 5:65–98

    PubMed  CAS  Google Scholar 

  • Neuhaus HE (2007) Transport of primary metabolites across the plant vacuolar membrane. FEBS Lett 581:2223–2226

    Article  PubMed  CAS  Google Scholar 

  • Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32

    PubMed  CAS  Google Scholar 

  • Okazaki N, Tsuda M, Wilson TH, Tsuchiya T (1994) Characterization of the lactose transport system in Citrobacter freundii. Biol Pharm Bull 17:794–797

    PubMed  CAS  Google Scholar 

  • Okazaki N, Jue XX, Miyake H, Kuroda M, Shimamoto T, Tsuchiya T (1997a) A melibiose transporter and an operon containing its gene in Enterobacter cloacae. J Bacteriol 179:4443–4445

    PubMed  CAS  Google Scholar 

  • Okazaki N, Jue XX, Miyake H, Kuroda M, Shimamoto T, Tsuchiya T (1997b) Sequence of a melibiose transporter gene of Enterobacter cloacae. Biochim Biophys Acta 1354:7–12

    PubMed  CAS  Google Scholar 

  • Olsen SG, Brooker RJ (1989) Analysis of the structural specificity of the lactose permease toward sugars. J Biol Chem 264:15982–15987

    PubMed  CAS  Google Scholar 

  • Olsen SG, Greene KM, Brooker RJ (1993) Lactose permease mutants which transport (malto)-oligosaccharides. J Bacteriol 175:6269–6275

    PubMed  CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    PubMed  CAS  Google Scholar 

  • Rickenberg HV (1957) The site of galactoside-permease activity in Escherichia coli. Biochim Biophys Acta 25:206–207

    Article  PubMed  CAS  Google Scholar 

  • Sahin-Toth M, Kaback HR (2000) Functional conservation in the putative substrate binding site of the sucrose permease from Escherichia coli. Biochemistry 39:6170–6175

    Article  PubMed  CAS  Google Scholar 

  • Sahin-Toth M, Frillingos S, Lengeler JW, Kaback HR (1995) Active transport by the CscB permease in Escherichia coli K-12. Biochem Biophys Res Commun 208:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Sahin-Toth M, Lengyel Z, Tsunekawa H (1999) Cloning, sequencing, and expression of cscA invertase from Escherichia coli B-62. Can J Microbiol 45:418–422

    Article  PubMed  CAS  Google Scholar 

  • Sahin-Toth M, Frillingos S, Lawrence MC, Kaback HR (2000) The sucrose permease of Escherichia coli: functional significance of cysteine residues and properties of a cysteine-less transporter. Biochemistry 39:6164–6169

    Article  PubMed  CAS  Google Scholar 

  • Sahin-Toth M, Gunawan P, Lawrence MC, Toyokuni T, Kaback HR (2002) Binding of hydrophobic d-galactopyranosides to the lactose permease of Escherichia coli. Biochemistry 41:13039–13045

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Yamada M, Erni B et al (1988) Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons. Faseb J 2:199–208

    PubMed  CAS  Google Scholar 

  • Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279

    PubMed  CAS  Google Scholar 

  • Sandermann H Jr (1977) β-d-galactoside transport in Escherichia coli: substrate recognition. Eur J Biochem 80:507–515

    Article  PubMed  CAS  Google Scholar 

  • Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581:2309–2317

    Article  PubMed  CAS  Google Scholar 

  • Segel IH (1976) Biochemical calculations: how to solve mathematical problems in general biochemistry. Wiley, New York

    Google Scholar 

  • Shinnick SG, Varela MF (2002) Altered sugar selection and transport conferred by spontaneous point and deletion mutations in the lactose carrier of Escherichia coli. J Membr Biol 189:191–199

    Article  PubMed  CAS  Google Scholar 

  • Shinnick SG, Perez SA, Varela MF (2003) Altered substrate selection of the melibiose transporter (MelY) of Enterobacter cloacae involving point mutations in Leu-88, Leu-91, and Ala-182 that confer enhanced maltose transport. J Bacteriol 185:3672–3677

    Article  PubMed  CAS  Google Scholar 

  • Shuman HA, Beckwith J (1979) Escherichia coli K-12 mutants that allow transport of maltose via the β-galactoside transport system. J Bacteriol 137:365–373

    PubMed  CAS  Google Scholar 

  • Stein WD (1986) Transport and diffusion across cell membranes. Academic Press, Orlando, FL, pp 363–474

    Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    Article  PubMed  CAS  Google Scholar 

  • Takusagawa F, Jacobson RA (1978) The crystal and molecular structure of α-maltose. Acta Crystallogr B 34:213–218

    Article  Google Scholar 

  • Vadyvaloo V, Smirnova IN, Kasho VN, Kaback HR (2006) Conservation of residues involved in sugar/H(+) symport by the sucrose permease of Escherichia coli relative to lactose permease. J Mol Biol 358:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Van Camp BM, Crow RR, Peng Y, Varela MF (2007) Amino acids that confer transport of raffinose and maltose sugars in the raffinose permease (RafB) of Escherichia coli as implicated by spontaneous mutations at Val-35, Ser-138, Ser-139, Gly-389 and Ile-391. J Membr Biol 220:87–95

    Article  PubMed  Google Scholar 

  • Varela MF, Wilson TH (1996) Molecular biology of the lactose carrier of Escherichia coli. Biochim Biophys Acta 1276:21–34

    Article  PubMed  Google Scholar 

  • Varela MF, Brooker RJ, Wilson TH (1997) Lactose carrier mutants of Escherichia coli with changes in sugar recognition (lactose versus melibiose). J Bacteriol 179:5570–5573

    PubMed  CAS  Google Scholar 

  • Varela MF, Wilson TH, Rodon-Rivera V, Shepherd S, Dehne TA, Rector AC (2000) Mutants of the lactose carrier of Escherichia coli which show altered sugar recognition plus a severe defect in sugar accumulation. J Membr Biol 174:199–205

    Article  PubMed  CAS  Google Scholar 

  • Yao B, Sollitti P, Marmur J (1989) Primary structure of the maltose-permease-encoding gene of Saccharomyces carlsbergensis. Gene 79:189–197

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Howard A. Shuman of Columbia University for E. coli strains HS4006 and HS2053 and Dr. Ron H. Kaback (UCLA) for plasmids pSP72/cscB and pJBL137. We are indebted to Dr. Jeffrey K. Griffith (University of New Mexico, Albuquerque, NM), Dr. Thomas H. Wilson (Harvard Medical School, Boston, MA), and Dr. Tomofusa Tsuchiya (Okayama University, Okayama, Japan) for helpful comments. This work was made possible by NIH Grants 1 R15 GM070562-01 and P20 RR016480, the latter of which is from the NM-INBRE program of the National Center for Research Resources, as well as an Internal Research Grant awarded by Eastern New Mexico University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Varela.

Additional information

Yang Peng and Sanath Kumar contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Kumar, S., Hernandez, R.L. et al. Evidence for the Transport of Maltose by the Sucrose Permease, CscB, of Escherichia coli . J Membrane Biol 228, 79–88 (2009). https://doi.org/10.1007/s00232-009-9161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9161-9

Keywords

Navigation