Skip to main content
Log in

Inhibition of ClC-2 Chloride Channels by a Peptide Component or Components of Scorpion Venom

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

ClC chloride channels play essential roles in membrane excitability and maintenance of osmotic balance. Despite the recent crystallization of two bacterial ClC-like proteins, the gating mechanism for these channels remains unclear. In this study we tested scorpion venom for the presence of novel peptide inhibitors of ClC channels, which might be useful tools for dissecting the mechanisms underlying ClC channel gating. Recently, it has been shown that a peptide component of venom from the scorpion L. quinquestriatus hebraeus inhibits the CFTR chloride channel from the intracellular side. Using two-electrode voltage clamp we studied the effect of scorpion venom on ClC-0, -1, and -2, and found both dose- and voltage-dependent inhibition only of ClC-2. Comparison of voltage-dependence of inhibition by venom to that of known pore blockers revealed opposite voltage dependencies, suggesting different mechanisms of inhibition. Kinetic data show that venom induced slower activation kinetics compared to pre-venom records, suggesting that the active component(s) of venom may function as a gating modifier at ClC-2. Trypsinization abolished the inhibitory activity of venom, suggesting that the component(s) of scorpion venom that inhibits ClC-2 is a peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

9-AC:

anthracene-9-carboxylic acid

CF:

cystic fibrosis

CFTR:

cystic fibrosis transmembrane conductance regulator;

CITx:

chlorotoxin

CPB:

2-(p-chlorophenoxy) butyric acid

CPP:

2-(p- chlorophenoxy) proprionic acid

DIDS:

4′4′-Diisothiocyano-2,2′-Stilbene disulfonate

DMSO:

dimethyl sulfoxide;

DNDS:

4,4′-Nitrostilbene- 2,2′-disulfonate

DPC:

diphenylamine 2-carboxylic Acid

NPPB:

5-nitro-2-(3-phenylpropylamino) benzoic acid

EGTA:

ethylene glycol-bis(β-aminoethyl ether)- N,N,N′,N′-tetraacetic acid;

VSTx:

voltage sensing toxin.

References

  1. Adjadlj E., Naudat V., Quiniou E., Wouters D, Sautiere P., Craescu C.T. 1997. Solution structure of Lqh-8/6, a toxin-like peptide from a scorpion venom—structural heterogeneity induced by proline cis/trans isomerization. Eur. J. Biochem. 246:218–227

    Article  CAS  PubMed  Google Scholar 

  2. Aromataris, E.C., Rychkov, G.V., Bennetts, B., Hughes, B.P., Bretag, A.H., Roberts, M.L. 2001. Fast and slow gating of ClC-1: differential effects of 2-(4-chlorophenoxy) propionic acid and dominant negative mutations. Mol. Pharmacol. 60:200–208

    CAS  PubMed  Google Scholar 

  3. Bauer C.K., Steinmeyer K., Schwarz J.R., Jentsch T.J. 1991. Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. 88:11052–11056

    Google Scholar 

  4. Chen T.Y. 1998. Extracellular zinc ion inhibits ClC-0 chloride channels by facilitating slow gating. J. Gen. Physiol. 12:715–726

    Google Scholar 

  5. Cuppoletti, J., Tewari, K., Sherry, A.M., Kupert, F.Y., Malinoska, D.H. 2001. ClC-2 Cl- channels in lung epithelia: activation by arachidonic acid, amidation, and acid-activated omeprazole. Am. J. Physiol. 281:C46–C54

    CAS  Google Scholar 

  6. DeBin J.A., Strichartz G.R. 1991. Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon 29:1403–1408

    Article  CAS  PubMed  Google Scholar 

  7. DeBin J.A., Maggio J.E., Strichartz G.R. 1993. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 264:C361–C369

    CAS  PubMed  Google Scholar 

  8. de Santiago, J.A., Nehrke, K., Arreola, J. 2005. Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel. J. Gen. Physiol. 126:591–603.

    Article  CAS  PubMed  Google Scholar 

  9. Devuyst O., Guggino W.B. 2002. Chloride channels in the kidney: lessons from knockout animals. Am. J. Physiol. 283:F1176–F1191

    CAS  Google Scholar 

  10. Doyle O., D.A., Morais Cabral J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  11. Dutzler R., Campbell E.B., MacKinnon R. 2003. Gating the selectivity filter in ClC chloride channels. Science 300:108–112

    Article  CAS  PubMed  Google Scholar 

  12. Dutzler, R..Campbell E.B., Cadene M., Chait B.J., MacKinnon R. 2002. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  CAS  PubMed  Google Scholar 

  13. Fahlke C., Yu H.T., Beck C., Rhodes T.H., George Jr. A.L. 1997. Pore-forming segments in voltage-gated chloride channels. Nature 390:529–532

    CAS  PubMed  Google Scholar 

  14. Fuller M.F., Zhang Z.R., Cui G., Kubanek J., McCarty N.A. 2004. Inhibition of CFTR channels by a peptide toxin of scorpion venom. Am. J. Physiol. 287:C1328–C1341

    Article  CAS  Google Scholar 

  15. Furukawa, T., Ogura, T., Katayama, Y., Hiraoka, M. 1998. Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am. J. Physiol. 274:C500–C512

    CAS  PubMed  Google Scholar 

  16. Gross A., MacKinnon R. 1996. Agitoxin footprinting the shaker potassium channel pore. Neuron 16:399–406

    Article  CAS  PubMed  Google Scholar 

  17. Gyomorey K., Garami F., Galley K., Rommens J.M., Bear C.E. 2000. Non-CFTR chloride channels likely contribute to secretion in the murine small intestine. Am. J. Physiol. 219:CL787–C1794

    Google Scholar 

  18. Haug K., Warnstedt M., Alekov A.K., Sander T., Ramirez A, Poser B., Maljevic S., Hebeisen S., Kubisch C., Rebstock J., Horvath S., Hallmann K., Dullinger J.S., Rau B., Haverkamp F., Beyenburg S., Schulz H., Janz D., Giese B., Muller-Newen G., Propping P., Elger C.E., Fahlke C., Lerche H., Heils A. 2003. Mutations: in ClCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat. Genet. 33:527–532

    Article  CAS  PubMed  Google Scholar 

  19. Hechenberger M., Schwappach B., Fischer W.N., Frommer W.B., Jentsch T.J., Steinmeyer K. 1996. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a ClC gene disruption. J. Biol. Chem. 271:33632–33638

    CAS  PubMed  Google Scholar 

  20. Jentsch T.J., Stein V, Weinreich F., Zdebik A.A. 2002. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82: 503–568

    CAS  PubMed  Google Scholar 

  21. Jordt S.E., Jentsch T.J. 1997. Molecular dissection of gating in the ClC-2 chloride channel. EMBO J 16:1582–1592

    Article  CAS  PubMed  Google Scholar 

  22. Koch M.C., Steinmeyer K., Lorenz C., Ricker K., Wolf F., Otto M., Zoll B., Lehmann-Horn F., Grzeschik K.H., Jentsch T.J. 1992. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257: 797–800

    CAS  PubMed  Google Scholar 

  23. Lee HC, Wang J.M, paq Swartz K.J. 2003. Interaction between extracellular Hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron 40:527–536

    Article  CAS  PubMed  Google Scholar 

  24. Li-Smerin Y., Swartz K.J. 1998. Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proc. Natl. Acad. Sci. USA 95:8585–8589

    Article  CAS  PubMed  Google Scholar 

  25. Lipecka J., Ball M., Thomas A., Fanen P., Edelman A., Fritsch J. 2002. Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am. J. Physiol. 282:C805–C816

    CAS  Google Scholar 

  26. Lloyd, S.E., Pearce, S.H., Fisher, S.E., Steinmeyer, K., Schwappach, B., Scheinman, S.J., Harding, B., Bolino, A., Devoto, M., Goodyer, P., Rigden, S.P., Wrong, O., Jentsch, T.J., 24. Craig, I.W., Thakker R.V. 1996. A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449

    Google Scholar 

  27. Machaca, K., Hartzell H.C. 1998. Asymmetrical distribution of Ca2+-activated Cl channels in Xenopus oocytes. Biophys. J. 74:1286–1295, 1998. Erratum in: Biophys. J. 74:3313

    Google Scholar 

  28. Maduke M., Miller C., Mindell J.A. 2000. A decade of CLC chloride channels: structure, mechanism, and many unsettled questions. Annu. Rev. Biophys. Biomol. Struct. 29:411–438

    Article  CAS  PubMed  Google Scholar 

  29. Maertens C., Wei L., Tytgat J., Droogmans G., Nilius B. 2000. Chlorotoxin does not inhibit volume-regulated, calcium-activated and cyclic AMP-activated chloride channels. Br. J. Pharmacol. 129:791–801

    Article  CAS  PubMed  Google Scholar 

  30. McCarty N.A., Zhang Z.R. 2001. Identification of a region of strong discrimination in the pore of CFTR. Am. J. Physiol. 281:L852–L867

    CAS  Google Scholar 

  31. McDonough S.I. 2003. Peptide toxin inhibition of voltage-gated calcium channels: Selectivity and Mechanisms In: Calcuim Channel Pharmacology, ed. McDonough SI. Plenum, New York

  32. McDonough S.I., Boland L.M., Mintz I.M., Bean B.P. 2002. Interactions among toxins that inhibit N-type and P-type calcium channels. J. Gen. Physiol. 119:313–328

    Article  CAS  PubMed  Google Scholar 

  33. McDonough S.I., Lampe R.A., Keith R.A., Bean B.P. 1997. Voltage-dependent inhibition of N- and P-type calcium channels by the peptide toxin omega-grammotoxin-SIA. Mol. Pharmacol. 52:1095–1104

    CAS  PubMed  Google Scholar 

  34. Murray C.B., Chu S., Zeitlin P.L. 1996. Gestational and tissue-specific regulation of ClC-2 chloride channel expression. Am. J. Physiol. 21:L829–L837

    Google Scholar 

  35. Naranjo D., Miller C. 1996. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel. Neuron 16:123–130

    Article  CAS  PubMed  Google Scholar 

  36. Niemeyer M.I., Cid L.P., Zuniga L., Catalan M., Sepulveda F.V. 2003. A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel. J. Physiol. 553:873–879

    Article  CAS  PubMed  Google Scholar 

  37. Norton R.S., Pallaghy P.K. 1998. The cystine knot structure of ion channel toxins and related polypeptides. Toxicon 36:1573–1583

    Article  CAS  PubMed  Google Scholar 

  38. Pusch M., Accardi A., Liantonio A., Ferrera L., De Luca A., Camerino D.C., Conti F. 2001. Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy) butyric acid (CPB). J. Gen. Physiol. 118:45–62

    Article  CAS  PubMed  Google Scholar 

  39. Pusch M., Liantonio A., Bertorello L., Accardi A., De Luca A., Pierno S., Tortorella V., Camerino D.C. 2000. Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral Clofibric acid derivatives. Mol. Pharmacol. 58:498–507

    CAS  PubMed  Google Scholar 

  40. Pusch M., Jordt S.E., Stein V., Jentsch T.J. 1999. Chloride dependence of hyperpolarization-activated chloride channel gates. J. Physiol. 5l5:341–353

    Google Scholar 

  41. Qu Z., Hartzell H.C. 2000. Anion permeation in Ca2+-activated Cl channels. J. Gen. Physiol. 116:825–844

    Article  CAS  PubMed  Google Scholar 

  42. Ruta V., Jiang Y., Lee A., Chen J., MacKinnon R. 2003. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422:180–185

    Article  CAS  PubMed  Google Scholar 

  43. Sherry A.M., Malinowska D.H., Morris R.E., Ciraolo G.M., Cuppoletti J. 2004. Localization of ClC-2 Cl- channels in rabbit gastric mucosa. Am. J. Physiol. 280:CL599–CL606

    Google Scholar 

  44. Sidach S.S., Mintz I.M. 2002. Kurtoxin, a gating modifier of neuronal high- and low-threshold Ca2+ channels. J.Neurosci. 22:2023–2034

    CAS  PubMed  Google Scholar 

  45. Simon D.B., Bindra R.S., Mansfield T.A., Nelson-Williams C., Mendonca E., Stone R., Schurman S., Nayir A., Alpay H., Bakkaloglu A., Rodriguez-Soriano J., Morales J.M., Sanjadv S.A., Taylor C.M., Pilz D., Brem A., Trachtman H., Griswold W., Richard G.A., John E., Lifton R.P. 1997. Mutations in the chloride channel gene, CLCNKB, cause Barrier’s syndrome type III. Nat. Genet. 17:171–178

    Article  CAS  PubMed  Google Scholar 

  46. Steinmeyer K., Klocke R., Ortland C., Gronemeier M., Jockusch H., Grander S., Jentsch T.J. 1991. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354:304–308

    CAS  PubMed  Google Scholar 

  47. Stobrawa S.M., Breiderhoff T., Takamori S., Engel D., Schweizer M., Zdebik A.A., Bosl M.R., Ruether K., Jahn H., Draguhn A., Jahn R., Jentsch T.J. 2001. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185–196

    Article  CAS  PubMed  Google Scholar 

  48. Swartz K.J., MacKinnon R. 1997. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18:665–673

    CAS  PubMed  Google Scholar 

  49. Swartz K.J., MacKinnon R. 1997. Mapping the receptor site for Hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18:675–682

    CAS  PubMed  Google Scholar 

  50. Zdebik A.A., Cuffe J.E., Bertog M, Korbmacher C, Jentsch T.J. 2004. Additional disruption of the ClC-2 Cl channel does not exacerbate the Cystic Fibrosis phenotype of Cystic Fibrosis Transmembrane Conductance Regulator mouse models. J. Biol. Chem. 219:22276–22283

    Article  CAS  PubMed  Google Scholar 

  51. Zuniga L., Niemeyer M.I., Varela D., Catalan M., Cid LP., Sepulveda F.V. 2004. The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. J. Physiol. 555:671–682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kate Hubbard for contributing to initial experiments. We thank Dr. Steve Harvey and Dr. Robert Lee for critically reading an early version of the manuscript. This work was supported by the National Institute of Health (NIH DK 56481 and DK 066409). During the performance of this work, N.A.M. was an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.A. McCarty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, C., Fields, D., Olivetti, P. et al. Inhibition of ClC-2 Chloride Channels by a Peptide Component or Components of Scorpion Venom. J Membrane Biol 208, 65–76 (2005). https://doi.org/10.1007/s00232-005-0818-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0818-8

Keywords

Navigation