Skip to main content
Log in

Influence of moisture content on the thermophysical properties of tropical wood species

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the thermal behavior of solid wood used as building materials. Three tropical wood species namely Iroko (Milicia excelsa), Bilinga (Nauclea diderrichii), and Tali (Erythrophleum suaveolens) were chosen. The thermophysical properties in the longitudinal, radial and tangential directions were determined experimentally for different moisture contents. Asymmetrical hot plate method was used to measure the thermal conductivity and volumetric heat capacity. The influence of water content and the direction of the fibers on thermophysical properties of the species studied were investigated. The results show that thermal conductivity and volumetric heat capacity increase with moisture content, while the diffusivity decreases. In the wide range of moisture content considered, thermal conductivities varied between 0.1 and 0.6 Wm−1 K−1. The increase of moisture content by 1% induces a 0.2% increase in thermal conductivity for Bilinga, 0.4% for Tali and 0.3% for Iroko. Tali, whose density is the highest, presented high values of thermal conductivity in longitudinal direction but lowest values in radial and tangential directions compared to other species. Thermal conductivity is 2 to 3 times higher in the longitudinal direction than in the radial and tangential directions. The volumetric heat capacity was not influenced by the direction of the heat flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a:

Thermal diffusivity of the sample (m2 s−1)

cp :

Specific heat capacity of the sample (J kg−1 K−1)

cpdry :

Specific heat capacity of dried material (J kg−1 K−1)

cph :

Specific heat capacity of the heating element (J kg−1 K−1)

cpi :

Specific heat capacity of the insulating material (J kg−1 K−1)

cpwater :

Specific heat capacity of water (J kg−1 K−1)

E:

Thermal effusivity of the sample (J m−2 K−1 s-1/2)

eh :

Thickness of the heating element (m)

ei :

Thickness of the insulating material (m)

Ei :

Thermal effusivity of the insulating material (J m−2 K−1 s-1/2)

es :

Thickness of the sample (m)

m:

Mass of the sample at time t (g)

m0 :

Initial mass of the sample (g)

mdry :

Dry mass of the sample (g)

Rc:

Thermal contact resistance (°C W−1)

RS:

Reduced sensitivity (°C)

S:

Heating element area (m2)

t:

Time (s)

T:

Temperature (°C)

V:

Volume (m3)

X:

Water content at time t (%)

X0 :

Initial water content (%)

β:

Coefficient used to estimate the volumetric heat capacity

δ:

Coefficient used to determine the thermal effusivity

λ:

Thermal conductivity (W m−1 K−1)

ρ:

Apparent density (kg/m3)

ρdry :

Apparent density of dried material (kg/m3)

ρwater :

Apparent density of water (kg/m3)

ϕ0 :

Heat flux in the heating element (W)

Ω:

Sum of quadratic errors

comp:

Complete model

exp:

Experimental

mod:

Model

simpl:

Simplified model

References

  1. Lau LC, Lee KT, Mohamed AR (2012) Global warming mitigation and renewable energy policy development from the Kyoto protocol to the Copenhagen accord - a comment. Renew Sust Energ Rev 16(7):5280–5284

    Article  Google Scholar 

  2. Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy and Buildings 40(3):394–398

    Article  Google Scholar 

  3. Gustavsson L, Joelsson A, Sathre R (2010) Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building. Energy and Buildings 42(2):230–242

    Article  Google Scholar 

  4. ADEME, Rapport Type 2011, Audit-Energétique-Bâtiment. www.ademe.fr

  5. Malsot J, Deroubaix G, Paquet Ph, Raji S, Prieur A, Lochu S (2005) Extention de l’égibilité de la séquestration foréstière du carbone à l’ensemble des stocks de la filière bois. VIIIème Colloque ARBORA, Carbone, Foret, Bois. ISTAB

  6. Elimbi A et al (2005) Protocole d’analyses des matières premières et produits finis au laboratoire, MIPROMALO

  7. Steinhagen HP (1977) Thermal conductive properties of wood, green or dry, from −40 to +100°C: a literature review, USDA Forest Service general technical report (FPL-9), Wisconsin

  8. Suleiman BM, Larfeldt J, Leckner B, Gustavsson M (1999) Thermal conductivity and diffusivity of wood. Wood Sci Technol 33:465–473

    Article  Google Scholar 

  9. Jia D, Afzal MT, Gongc M, Bedane AH (2010) Modeling of moisture diffusion and heat transfer during softening in wood densification. Int J Eng 4:191–200

    Google Scholar 

  10. Siau JF (1995) Wood: influence of moisture on physical properties. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  11. Harada T, Hata T, Ishihara S (1998) Thermal constants of wood during the heating process measured with the laser flash method. J Wood Sci 44:425–431

    Article  Google Scholar 

  12. Kol HS (2009) The transverse thermal conductivity coefficients of some hardwood species grown in Turkey. For Prod J 59:58–63

    Google Scholar 

  13. Sonderegger W, Hering S, Niemz P (2011) Thermal behaviour of Norway spruce and European beech in and between theprincipal anatomical directions. Holzforschung 65:369–375

    Google Scholar 

  14. Rohsenow W, Hartnett J, Ganic E (1973) Handbook of heat transfer fundamentals. McGraw-Hill Book Company, New York

    Google Scholar 

  15. Ngohe-Ekam PS, Meukam P, Menguy G, Girard P (2006) Thermo-physical characterization of tropical wood used as building materials: with respect to the basal density. Constr Build Mater 20:929–938

    Article  Google Scholar 

  16. Cherki A, Remy B, Khabbazi A, Jannot Y, Baillis D (2014) Experimental thermal properties characterization of insulating cork-gypsum composite. Constr Build Mater 54:202–209

    Article  Google Scholar 

  17. Bal H, Jannot Y, Quenette N, Chenu A, Gaye S (2012) Water content dependence of the porosity and thermal capacity of laterite based bricks with millet waste additive. Constr Build Mater 31:144–150

    Article  Google Scholar 

  18. Laaroussi N, Lauriat G, Garoum M, Cherki A, Jannot Y (2014) Measurement of thermal properties of brick materials based on clay mixtures. Constr Build Mater 70:351–361

    Article  Google Scholar 

  19. Mvondo RRN, Meukam P, Jeong J, De Sousa Meneses D, Nkeng EG (2017) Influence of water content on the mechanical and chemical properties of tropical wood species. Results in Physics 7:2096–2103

    Article  Google Scholar 

  20. Gerard J, Kouassi AE, Daigremont C, Detienne P, Fouquet D, Vernay M (1998) Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains. Serie FORAFRI No. Document 11. CIRAD-Foret, Montpellier 187p

    Google Scholar 

  21. Damfeu JC, Meukam P, Jannot Y, Wati E (2017) Modeling and experimental determination of thermal properties of local wet buildings materials. Energy and Buildings 135:109–118

    Article  Google Scholar 

  22. MacLean JD (1941) Thermal conductivity of wood. Heat Piping Air Cond 13:380–391

    Google Scholar 

  23. Jannot Y, Remy B, Degiovanni A (2009) Measurement of thermal conductivity and thermal resistance with a tiny hot plate high temp. High Pressure 39:11–31

    Google Scholar 

  24. Jannot Y, Zoubir A, Kanmogne A (2006) Transient hot plate method with two temperature measurements for thermal characterization of metals. Meas Sci Technol 17:69–74

    Article  Google Scholar 

  25. Meukam P, Jannot Y, Noumowe A, Kofane TC (2004) Thermophysical characteristics of economical building materials. Constr Build Mater 18:437–443

    Article  Google Scholar 

  26. Vay O, De Borst K, Hansmann C, Teischinger A, Müller U (2014) Thermal conductivity of wood at angles to the principal anatomical directions. Wood Sci Technol 49:577–589

    Article  Google Scholar 

  27. Couturier MF, George K, Schneider MH (1996) Thermo-physical properties of wood-polymer composites. Wood Sci Technol 30:179–196

    Article  Google Scholar 

  28. Ugolev BN (2001) Wood science with fundamentals of forest merchandizing. Publishing house of MGUL, Moscow 340 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Meukam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- Thermal properties of wood species were measured using the asymmetrical transient hot plate method;

- Experimental results show that thermal conductivity is higher in the longitudinal direction than in the radial and tangential directions.

- Thermal conductivity increases considerably with increasing water content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mvondo, R.R.N., Damfeu, J.C., Meukam, P. et al. Influence of moisture content on the thermophysical properties of tropical wood species. Heat Mass Transfer 56, 1365–1378 (2020). https://doi.org/10.1007/s00231-019-02795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02795-8

Navigation