Skip to main content
Log in

Enhancement of laminar convective heat transfer using microparticle suspensions

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Inner surface area of the test tube (m2)

Al2O3 :

Aluminium oxide

Co3O4 :

Cobalt oxide

CuO:

Copper oxide

\(Cp\) :

Specific heat (J/kg/K)

D :

Equivalent diameter (m)

k :

Thermal conductivity (W/m/K)

h :

Heat transfer coefficient (W/m2/K)

\(\dot{m}\) :

Mass flow rate (kg/s)

Nu :

Nusselt number

T :

Temperature (°C)

Pr:

Prandtl number

q″:

Heat flux (W/m2)

Re:

Reynolds number

T s :

Local temperature at the inner wall of the tube (°C)

T f :

Local mean temperature of the fluid (°C)

x :

Dimensionless coordinates

\(\varphi\) :

Volume fraction

ρ :

Density (kg/m3)

µ :

Dynamic viscosity (Pa s)

f :

Base fluid

in :

Inlet

max :

Maximum

o :

Outer wall

out :

Outlet

p :

Microparticles

pf :

Microparticle suspension

s :

Surface

References

  1. Garimella SV, Fleischer AS, Murthy JY, Keshavarzi A, Prasher R, Patel C, Bhavnani SH, Venkatasubramanian R, Mahajan R, Joshi Y (2008) Thermal challenges in next-generation electronic systems. IEEE Trans Compon Packaging Technol 31(4):801–815

    Article  Google Scholar 

  2. Tuckerman DB, Pease R (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett 2(5):126–129

    Article  Google Scholar 

  3. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52(13):3187–3196

    Article  MATH  Google Scholar 

  4. Rao Y, Dammel F, Stephan P, Lin G (2007) Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat Mass Transf 44(2):175–186

    Article  Google Scholar 

  5. Goel M, Roy SK, Sengupta S (1994) Laminar forced convection heat transfer in microcapsulated phase change material suspensions. Int J Heat Mass Transf 37(4):593–604

    Article  Google Scholar 

  6. Zhao C-Y, Zhang GH (2011) Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sustain Energy Rev 15(8):3813–3832

    Article  Google Scholar 

  7. Huang L, Petermann M, Doetsch C (2009) Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications. Energy 34(9):1145–1155

    Article  Google Scholar 

  8. Huang Y, Xuan Y, Li Q (2012) Experimental investigation on convective heat transfer of magnetic phase change microcapsule suspension. Appl Therm Eng 47:10–17

    Article  Google Scholar 

  9. Xuan Y, Huang Y, Li Q (2009) Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension. Chem Phys Lett 479(4):264–269

    Article  Google Scholar 

  10. Rao Y, Dammel F, Stephan P, Lin G (2006) Flow frictional characteristics of microencapsulated phase change material suspensions flowing through rectangular minichannels. Sci China Ser E Technol Sci 49(4):445–456

    Article  Google Scholar 

  11. Lee S, Choi S-S, Li S, Eastman J (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289

    Article  Google Scholar 

  12. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J 11(2):151–170

    Article  Google Scholar 

  13. Zeinali Heris S, Etemad SG, Nasr Esfahany M (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf 33(4):529–535

    Article  Google Scholar 

  14. Starace AK, Gomez JC, Wang J, Pradhan S, Glatzmaier GC (2011) Nanofluid heat capacities. J Appl Phys 110(12):124323

    Article  Google Scholar 

  15. Chavan D, Pise AT (2015) Experimental investigation of convective heat transfer agumentation using Al2O3/water nanofluid in circular pipe. Heat Mass Transf 51(9):1237–1246

    Article  Google Scholar 

  16. Sonage B, Mohanan P (2014) Heat transfer and pressure drop characteristic of zinc–water nanofluid. Heat Mass Transf 51(4):521–527

    Article  Google Scholar 

  17. Khorasanizadeh H, Fakhari M, Ghaffari S (2015) Effects of properties variations of Al2O3–EG–water nanofluid on natural convection heat transfer in a two-dimensional enclosure: Enhancement or deterioration? Heat Mass Transf 51(5):671–684

    Article  Google Scholar 

  18. Nguyen CT, Roy G, Gauthier C, Galanis N (2007) Heat transfer enhancement using Al2O3—water nanofluid for an electronic liquid cooling system. Appl Therm Eng 27(8):1501–1506

    Article  Google Scholar 

  19. Anoop K, Sundararajan T, Das SK (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf 52(9):2189–2195

    Article  MATH  Google Scholar 

  20. Byrne MD, Hart RA, da Silva AK (2012) Experimental thermal–hydraulic evaluation of CuO nanofluids in microchannels at various concentrations with and without suspension enhancers. Int J Heat Mass Transf 55(9):2684–2691

    Article  Google Scholar 

  21. Sharma K, Sundar LS, Sarma P (2009) Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. Int Commun Heat Mass Transf 36(5):503–507

    Article  Google Scholar 

  22. Wamkam CT, Opoku MK, Hong H, Smith P (2011) Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles. J Appl Phys 109(2):024305

    Article  Google Scholar 

  23. Bou Sanayeh M, Bergmann A, Michalzik R (2014) Simultaneous optical manipulation of multiple particles inside microfluidic channels using one rectangular-shaped VCSEL. In: Proceedings of SPIE 9129, Biophotonics: Photonic Solutions for Better Health Care IV, p 91292O, 8 May 2014. doi:10.1117/12.2051610

  24. Glynne-Jones P, Boltryk RJ, Hill M, Harris NR, Baclet P (2009) Robust acoustic particle manipulation: A thin-reflector design for moving particles to a surface. J Acoust Soc Am 126(3):EL75–EL79

    Article  Google Scholar 

  25. Khoshmanesh K, Zhang C, Nahavandi S, Tovar-Lopez FJ, Baratchi S, Mitchell A, Kalantar-Zadeh K (2010) Size based separation of microparticles using a dielectrophoretic activated system. J Appl Phys 108(3):034904

    Article  Google Scholar 

  26. Yamanishi Y, Lin Y-C, Arai F (2007) Magnetically modified PDMS microtools for micro particle manipulation. In: IEEE/RSJ international conference on intelligent robots and systems. IROS 2007, IEEE, pp 753–758

  27. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  Google Scholar 

  28. Miller MA, Engstrom JD, Ludher BS, Johnston KP (2009) Low viscosity highly concentrated injectable nonaqueous suspensions of lysozyme microparticles. Langmuir 26(2):1067–1074

    Article  Google Scholar 

  29. Chen H, Ding Y, Tan C (2007) Rheological behaviour of nanofluids. New J Phys 9(10):367

    Article  Google Scholar 

  30. Einstein A (1956) Investigations on the Theory of the Brownian Movement. Courier Dover Publications, Mineola

    MATH  Google Scholar 

  31. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43(19):3701–3707

    Article  MATH  Google Scholar 

  32. Maxwell JC (1954) Electricity and magnetism, vol 2. Courier Dover Publications, Mineola

    MATH  Google Scholar 

  33. Shah R (1975) Thermal entry length solutions for the circular tube and parallel plates. In: Third national heat mass transfer conference. Indian Institute of Technology, Bombay, India, pp 11–75

  34. Ladd AJ (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271(1):285–309

    Article  MathSciNet  MATH  Google Scholar 

  35. Ladd A, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104(5–6):1191–1251

    Article  MathSciNet  MATH  Google Scholar 

  36. De Rosis A, Falcucci G, Ubertini S, Ubertini F, Succi S (2013) Lattice Boltzmann analysis of fluid-structure interaction with moving boundaries. Commun Comput Phys 13(03):823–834

    Article  MATH  Google Scholar 

  37. O’Connell ST, Thompson PA (1995) Molecular dynamics–continuum hybrid computations: a tool for studying complex fluid flows. Phys Rev E 52(6):R5792

    Article  Google Scholar 

  38. Nie X, Chen S, Robbins M (2004) A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow. J Fluid Mech 500:55–64

    Article  MATH  Google Scholar 

  39. Liu J, Chen S, Nie X, Robbins MO (2007) A continuum–atomistic simulation of heat transfer in micro-and nano-flows. J Comput Phys 227(1):279–291

    Article  MATH  Google Scholar 

  40. Mohamed K, Mohamad A (2010) A review of the development of hybrid atomistic–continuum methods for dense fluids. Microfluid Nanofluid 8(3):283–302

    Article  Google Scholar 

  41. Santiago JG, Wereley ST, Meinhart CD, Beebe D, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319

    Article  Google Scholar 

  42. Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1(1):2–21

    Article  Google Scholar 

  43. Zhu JY, Tang S-Y, Khoshmanesh K, Ghorbani K (2016) An Integrated Liquid Cooling System Based on Galinstan Liquid Metal Droplets. ACS Appl Mater Interfaces 8(3):2173–2180

    Article  Google Scholar 

  44. Tang SY, Zhu J, Sivan V, Gol B, Soffe R, Zhang W, Mitchell A, Khoshmanesh K (2015) Creation of liquid metal 3D microstructures using dielectrophoresis. Adv Funct Mater 25(28):4445–4452

    Article  Google Scholar 

  45. Siddique M, Khaled A-R, Abdulhafiz N, Boukhary A (2010) Recent advances in heat transfer enhancements: a review report. Int J Chem Eng 2010:106461. doi:10.1155/2010/106461

    Article  Google Scholar 

  46. Sudarsan AP, Ugaz VM (2006) Multivortex micromixing. Proc Natl Acad Sci 103(19):7228–7233

    Article  Google Scholar 

  47. Yi P, Khoshmanesh K, Campbell JL, Coughlan P, Ghorbani K, Kalantar-zadeh K (2014) Investigation of different nanoparticles for magnetophoretically enabled nanofin heat sinks in microfluidics. Lab Chip 14(9):1604–1613

    Article  Google Scholar 

  48. Oakey J, Applegate RW, Arellano E, Di Carlo D, Graves SW, Toner M (2010) Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal Chem 82(9):3862–3867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiu Yang Zhu or Kamran Ghorbani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J.Y., Tang, S., Yi, P. et al. Enhancement of laminar convective heat transfer using microparticle suspensions. Heat Mass Transfer 53, 169–176 (2017). https://doi.org/10.1007/s00231-016-1807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1807-4

Keywords

Navigation