Skip to main content
Log in

Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50–250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Heat transfer area (m2)

c p :

Specific heat (kJ/kg K)

D :

Tube diameter (m)

D h :

Hydraulic diameter (m)

\(dP/dz\) :

Pressure gradient (kPa/m)

e :

Fin height (m)

EF :

Enhancment factor

f :

Friction factor

g :

Gravitational constant (m/s2)

G :

Mass flux (kg/m2 s)

h :

Heat transfer coefficient (kW/m2 K)

i fg :

Latent heat of vaporization (kJ/kg)

j g :

Superficial velocity of gas (m/s)

k :

Thermal conductivity (W/mK)

L :

Length (m)

\(\dot{m}\) :

Mass flow rate (kg/s)

n :

Number of fins

Nu:

Nusselt number

P :

Pressure (Pa)

PF :

Penalty factor

P w :

Wetted perimeter (m)

Pr:

Prandtl number

Q :

Heat transfer rate (kW)

\(q^{{\prime \prime }}\) :

Heat flux (kW/m)

Re:

Reynolds number

t :

Tube wall thickness (m)

T :

Temperature (K)

U :

Overall heat transfer coefficient (kW/m2 K)

v :

Specific volume (m3/kg)

V :

Velocity (m/s)

x :

Vapor quality

X :

Martinelli parameter

z :

Flow direction (m)

α :

Void fraction

β :

Helix angle (°)

γ :

Fin apex angle (°)

µ :

Viscosity (Pa s)

ΔT :

Temperature difference (K)

\(\phi\) :

Two-phase multiplier

ρ :

Density (kg/m3)

a:

Actual, acceleration

an:

Annular

ave:

Average

corr:

Correlation

crit:

Critical

exp:

Experimental

f:

Friction

fa:

Flow area

fg:

Liquid to gas

h:

Hydraulic

i:

Inside

in:

Inlet

f:

Friction

l:

Liquid

lm:

Log mean

m:

Melt-down, middle

mix:

Mixture

o:

Outside

p:

Pre-heater

pred:

Prediction

r:

Fin root, refrigerant

sat:

Saturation

st:

Stratified

t:

Tip

w:

Water

v:

Vapor

References

  1. Webb RL, Kim NH (2005) Principles of enhanced heat transfer, 2nd edn. Taylor and Francis Pub, London

    Google Scholar 

  2. Cavallini A, Del Col D, Mancin S, Rossetto L (2009) Condensation of pure and near-azeotropic refrigerants in microfin tubes: a new computational procedure. Int J Refrig 32:162–174

    Article  Google Scholar 

  3. Laohalertdecha S, Dalkilic AS, Wongwises S (2012) A review on heat transfer performance and pressure drop characteristics of various enhanced tubes. Int J Air-Cond Refrig 20(4):1230003

    Article  Google Scholar 

  4. Kim NH (2015) Evaporation heat transfer and pressure drop of R-410A in a 5.0 mm O.D. smooth and microfin tube. Int J Air-Cond Refrig 23(1):1550004

    Article  Google Scholar 

  5. Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L (2000) Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes. Int J Refrig 23:4–25

    Article  Google Scholar 

  6. Fujie K, Itoh N, Kimura H, Nakayama N, Yanugidi T (1977) Heat transfer pipe. US Patent 4044479, assigned to Hitachi Ltd

  7. Tatsumi A, Oizumi K, Hayashi M, Ito M (1982) Application of inner groove tubes to air conditioners. Hitachi Rev 32(1):55–60

    Google Scholar 

  8. Shinohara Y, Tobe M (1985) Development of an improved thermofin tube. Hitachi Cable Rev 4:47–50

    Google Scholar 

  9. Yasuda K, Ohizumi K, Hori M, Kawamata O (1990) Development of condensing thermofin HEX-C tube. Hitachi Cable Rev 9:27–30

    Google Scholar 

  10. Tsuchida T, Yasuda K, Hori M, Otani Y (1993) Internal heat transfer characteristics and workability of narrow thermofin tubes. Hitachi Cable Rev 12:97–100

    Google Scholar 

  11. Houfuku M, Suzuki Y, Inui K (2001) High performance, light weight thermofin tubes for air-conditioners using alternative refrigerants. Hitachi Cable Rev 20:97–100

    Google Scholar 

  12. Webb RL (1999) Prediction of condensation and evaporation in microfin and micro-channel tubes. In: Kakac S, Bergles AE, Mayinger F, Yuncu H (eds) Heat transfer enhancement of heat exchangers. Kluwer, pp 529–550

  13. Newell TA, Shah RK (2001) An assessment of refrigerant heat transfer, pressure drop and void fraction effects in microfin tubes. Int J HVAC&R Res 7(2):125–153

    Article  Google Scholar 

  14. Kedzierski MA, Gonclaves JM (1999) Horizontal convective condensation of alternative refrigerants within a micro-fin tube. J Enhanc Heat Transf 6:161–178

    Article  Google Scholar 

  15. Eckels SJ, Tesene BA (1999) A comparison of R-22, R-134a, R-410A and R-407C condensation performance in smooth and enhanced tubes, Part I: heat transfer. ASHRAE Trans 105:428–441

    Google Scholar 

  16. Kwon JT, Park SK, Kim MH (2000) Enhanced effect of a horizontal microfin tube for condensation heat transfer with R-22 and R-410A. J Enhanc Heat Transf 7:97–107

    Article  Google Scholar 

  17. Miyara A, Otsubo Y (2002) Condensation heat transfer of herringbone micro fin tubes. Int J Therm Sci 41:639–645

    Article  Google Scholar 

  18. Yu J, Koyama S (1998) Condensation heat transfer of pure refrigerants in microfin tubes. In: Proceedings of international refrigeration conference at Purdue, pp 325–330

  19. Tang L, Ohadi M, Johnson AT (2000) Flow condensation in smooth and microfin tubes with HCFC-22, HFC-134a and HFC-410A refrigerants, part I: experimental results. J Enhanc Heat Transf 7:289–310

    Article  Google Scholar 

  20. Goto M, Inoue N, Ishiwatari N (2001) Condensation and evaporation heat transfer of R-410A inside internally grooved horizontal tubes. Int J Refrig 24:628–638

    Article  Google Scholar 

  21. Jung D, Cho Y, Park K (2004) Flow condensation heat transfer coefficients of R-22, R-134a, R-407C and R-410A inside plain and microfin tubes. Int J Refrig 27:25–32

    Article  Google Scholar 

  22. Kim MH, Shin JS (2005) Condensation heat transfer of R-22 and R-410A in horizontal smooth and microfin tubes. Int J Refrig 28:949–957

    Article  Google Scholar 

  23. Han D, Lee KJ (2005) Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes. Int J Heat Mass Transf 48:3804–3816

    Article  Google Scholar 

  24. Cavallini A, Del Col D, Mancin S, Rossetto L (2006) Thermal performance of R-410A condensing in a microfin tube. In: Proceedings of international refrigeration conference at Purdue, R178

  25. Zhang GM, Wu Z, Wang X, Li W (2012) Convective condensation of R-410A in microfin tubes. J Enhanc Heat Transf 19(6):515–525

    Article  Google Scholar 

  26. Kim NH, Cho JP, Youn B (2003) Condensation of R-22 and R-410A in flat aluminum extruded tubes. Int J Refrig 26:830–839

    Article  Google Scholar 

  27. Wilson EE (1915) A basis for rational design of heat transfer apparatus. Trans ASME 37:47–70

    Google Scholar 

  28. Klein SJ, McClintock FA (1953) The description of uncertainties in single sample experiments. Mech Eng 75:3–9

    Google Scholar 

  29. Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  30. Ghiaasiaan SM (2008) Two-phase flow, boiling and condensation. Cambridge University Press, Cambridge

    Google Scholar 

  31. Shah MM (1979) A general correlation for heat transfer during film condensation in tubes. Int J Heat Mass Transf 22(4):547–556

    Article  Google Scholar 

  32. Haraguchi H, Koyama S, Fujii T (1994) Condensation of refrigerants HCFC22, HFC134a and HCFC123 in a horizontal smooth tube (2nd Report, proposal of empirical expressions for local heat transfer coefficient). Trans JSME 60(574):245–252

    Google Scholar 

  33. Dobson MK, Chato JC (1998) Condensation in smooth horizontal tubes. J Heat Transf 120:193–213

    Article  Google Scholar 

  34. Cavallini A, Censi G, Del Col D, Doretti L, Longo GA, Rossetto L (2002) Condensation of halogenated refrigerants inside smooth tubes. Int J HVAC&R Res 8(4):429–451

    Article  Google Scholar 

  35. Thome JR, El Hajal J, Cavallini A (2003) Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. Int J Heat Mass Transf 46:3365–3387

    Article  MATH  Google Scholar 

  36. Doretti L, Zilio C, Mancin S, Cavallini A (2013) Condensation flow patterns inside plain and microfin tubes: a review. Int J Refrig 36:567–587

    Article  Google Scholar 

  37. Shah MM (2009) An improved and extended general correlation for heat transfer during condensation in plain tubes. Int J HVAC&R Research 15(5):889–913

    Article  Google Scholar 

  38. Yoshida S, Matsunaga T, Hong HP (1987) Heat transfer to refrigerants in horizontal evaporator tubes with internal spiral grooves. In: Proceedings 1987 ASME-JSME thermal engineering joint conference, vol 5, pp 165–172

  39. Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L (1999) A new computational procedure for heat transfer and pressure drop during refrigerant condensation inside enhanced tubes. J Enhanc Heat Transf 6:441–456

    Article  Google Scholar 

  40. Wang HS, Wei JJ, Honda H, Rose JW (2007) Condensation of refrigerants in horizontal microfin tubes: a new correlation. In: Proceedings of internation congress of refrigeration, Beijing, China, ICR07-B1-658

  41. Chamra LM, Mago PJ, Tan MO, Kung CC (2005) Modeling of condensation heat transfer of pure refrigerants in micro-fin tubes. Int J Heat Mass Transf 48:1293–1302

    Article  Google Scholar 

  42. Tang L, Ohadi M, Johnson AT (2000) Flow condensation in smooth and microfin tubes with HCFC-22, HFC-134a and HFC-410A refrigerants, part II: design equations. J Enhanc Heat Transf 7:311–325

    Article  Google Scholar 

  43. Zivi SM (1964) Estimation of steady-state steam void fraction by means of the principle of minimum entropy production. J Heat Transf 68:247–252

    Article  Google Scholar 

  44. Smith SL (1969) -1970) Void fraction in two-phase flow: a correlation based upon an equal velocity head model. Inst. Mech Eng 184:647–657

    Google Scholar 

  45. Rouhani Z, Axelsson E (1970) Calculation of void volume fraction in the subcooled and quality boiling regions. Int J Heat Mass Trans 13:383–393

    Article  Google Scholar 

  46. Friedel L (1979) Improved pressure drop correlations for horizontal and vertical two-phase pipe flow. 3R Int 18:485–492

  47. Muller-Steinhagen H, Heck K (1986) A simple friction pressure drop correlation for two-phase flow in pipes. Chem Eng Process 20:297–308

    Article  Google Scholar 

  48. Jung D, Radermacher R (1989) Prediction of pressure drop during horizontal annular flow boiling of pure and mixed refrigerants. Int J Heat Mass Transf 32(12):2435–2446

    Article  Google Scholar 

  49. Moreno Quiben J, Thome JR (2007) Flow pattern based two-phase frictional pressure drop model for horizontal tubes, part II: new phenomenological model. Int J Heat Fluid Flow 28:1060–1072

    Article  Google Scholar 

  50. Haraguchi H, Koyama S, Esaki J, Fujii T (1993) Condensation heat transfer of refrigerants HCFC134a, HCFC123 and HCFC22 in a horizontal smooth tube and a horizontal microfin tube. In: Proceedings of 30th National Symp. of Japan, Yokohama, pp 343–345

  51. Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L (1997) Pressure drop during condensation and vaporization of refrigerants inside enhanced tubes. Heat Technol 15(1):3–10

    Google Scholar 

  52. Nozu S, Katayama H, Nakata H, Honda H (1998) Condensation of refrigerant CFC11 in horizontal microfin tubes (proposal of a correlation equation for frictional pressure gradient). Exp Therm Fluid Sci 18:82–96

    Article  Google Scholar 

  53. Choi JY, Kedzierski MA, Domanski PA (2001) Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes. In: Proceedings of IIF-IIR Commission B1, Paderborn, Germany, B4, pp 9–16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nae-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NH. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes. Heat Mass Transfer 52, 2833–2847 (2016). https://doi.org/10.1007/s00231-016-1789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1789-2

Keywords

Navigation