Skip to main content
Log in

Heat transfer for falling film evaporation of industrially relevant fluids up to very high Prandtl numbers

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In many industrial applications, falling film evaporation is an attractive technique for solvent removal due to high heat transfer and low residence times. Examples are the powder production in the dairy industry and in kraft pulp production process to remove water from so called black liquor. Common for both applications is that the fluids exhibit high viscosities in industrial practice. In this paper, results from experimental studies on both black liquor and a dairy product are reported for Prandtl numbers up to 800. The results are compared with several existing correlation in literature, and the need for a modified correlation is recognized especially to cover higher Prandtl-numbers. The following correlation for the turbulent flow region with 3 < Pr < 800 was derived from the data:

$${\text{Nu}}_{t} = 0.0085 \cdot \text{Re}^{0.2} \cdot {\text{Pr}^{0.65}}$$

The correlation has been compared to literature data from one additional study on two other fluids (propylene glycol and cyclohexanol) with fairly high Prandtl-numbers, from 40 to 58 and from 45 to 155 respectively and the agreement was within ±40 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Area (m2)

c p :

Specific heat (J kg−1 K−1)

g :

Gravitational acceleration (m s−2)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

K :

Constant in Nusselt correlations

K τ :

Consistency factor (Pa sn)

l :

Viscous length (m)

n :

Exponent in Nusselt correlations

n τ :

Flow behaviour index

P :

Parameter

Q tot :

Rate of heating (W)

q :

Heat flux (W m−2)

S :

Dry solids mass fraction (kg kg−1)

T :

Temperature (°C)

v :

Velocity (m s−1)

U :

Overall heat transfer coefficient (W m−2 K−1)

x :

Distance from liquid/gas interface (m)

\(\dot{\gamma }\) :

Shear rate (s−1)

Γ :

Specific mass flow rate (kg m−1 s−1)

δ :

Thickness (m)

ΔT :

Temperature difference (°C)

μ :

Dynamic viscosity (Pa s)

ν :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

σ :

Surface tension (N m−1)

τ :

Shear stress (Pa)

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

exp:

Experimental

film:

Falling film

i:

Inside

l:

Laminar flow

m:

Mean

model:

Model

o:

Outside

sat:

Saturation

steam:

Heating steam

t:

Turbulent flow

w:

Evaporator tube wall

References

  1. Adams TN, Frederick WJ, Grace TM, Hupa M, Iisa K, Jones AK, Tran H (1997) Kraft recovery boilers. American Forest & Paper Association, New York

    Google Scholar 

  2. Reddy CS, Datta AK (1994) Thermophysical properties of concentrated reconstituted milk during processing. J Food Eng 21(1):31–40

    Article  Google Scholar 

  3. Johansson M, Vamling L, Olausson L (2006) Falling film evaporation of black liquor—comparison with general heat transfer correlations. Nord Pulp Pap Res J 21(4):496–506

    Article  Google Scholar 

  4. Karlsson M, Gourdon M, Olausson L, Vamling L (2013) Heat transfer for falling film evaporation of black liquor up to very high Prandtl numbers. Int J Heat Mass Transf 65:907–918

    Article  Google Scholar 

  5. Arndt S, Scholl S (2011) Evaporation of single component viscous liquids in a metal falling film evaporator. Heat Mass Transf/Waerme- und Stoffuebertragung 47(8):963–971

    Article  Google Scholar 

  6. Schnabel G, Schlünder EU (1980) Wärmeübergang von senkrechten Wänden an nichtsiedende und siedende Rieselfilme. “Heat transfer from vertical walls to falling liquid films with or without evaporation.”. Verfahrenstechnik 14(2):79–83

    Google Scholar 

  7. Grossman G, Heath MT (1984) Simultaneous heat and mass transfer in absorption of gases in turbulent liquid films. Int J Heat Mass Transf 27(12):2365–2376

    Article  MATH  Google Scholar 

  8. Al-Sibai F (2005) Experimentelle Untersuchung der Strömungscharakteristik und des Wärmeübergangs bei welligen Rieselfilmen. RWTH Aachen, Aachen

    Google Scholar 

  9. Nusselt W (1916) Die oberflächenkondensation des wasserdampfes. Zeitschrift des vereines deutscher ingenieure 60(nr 27):s.541–s.546

    Google Scholar 

  10. Chun KR, Seban RA (1971) Heat transfer to evaporating liquid films. J Heat Transf Trans ASME 93(4):391–397

    Article  Google Scholar 

  11. Holmberg PA, Berntsson T, Persson L (1991) Heat transfer in a falling film lithiumbromide–water evaporator—an experimental study. In: International congress of refrigeration

  12. Asblad A, Berntsson T (1991) Surface evaporation of turbulent falling films. Int J Heat Mass Transf 34(3):835–841

    Article  Google Scholar 

  13. Mudawwar IA, El-Masri MA (1986) Momentum and heat transfer across freely-falling turbulent liquid films. Int J Multiph Flow 12(5):771–790

    Article  MATH  Google Scholar 

  14. Wadekar VV (2000) Heat transfer to falling liquid films with high Prandtl numbers. In: 3rd European thermal science conference, pp 851–856

  15. Numrich R (1995) Heat transfer in turbulent falling films. Chem Eng Technol 18(3):171–177

    Article  Google Scholar 

  16. Harkonen M (1994) Heat-transfer to evaporating falling films of water and sugar water solution. Waerme und stoffubertragung-thermo and fluid dynamics 29(6):349–353

    Article  Google Scholar 

  17. Kapitza PL (1964) Collected papers by P. L. Kapitza, Macmillan, New York, p 662

    Google Scholar 

  18. Pehlivan H, Özdemir M (2012) Experimental and theoretical investigations of falling film evaporation. Heat and Mass Transfer/Waerme- und Stoffuebertragung 48(6):1071–1079

    Article  Google Scholar 

  19. Schnabel G, Palen JW (1998) Wärmeubergang an senkrechten berieselten Flächen. VDI Wärmeatlas, 8th edn. Springer, Berlin (Sect Md)

    Google Scholar 

  20. Johansson M (2008) Heat transfer and hydrodynamics in falling film evaporation of black liquor. Chalmers tekniska högskola, Gothenburg

    Google Scholar 

  21. Marimex (2013) “MARIMEX Industries GmbH & Co”, http://www.marimex.de/eng-technology-process-viscometer.php. Accessed 01-09 2013

  22. Ang KLJ (2011) Investigation of rheological properties of concentrated milk and the effect of these properties on flow within falling film evaporators. University of Canterbury, Christchurch

    Google Scholar 

  23. Söderhjelm L (1988) Factors affecting the viscosity of strong black liquor. Appita 41:389–392

    Google Scholar 

  24. Moosavifar A, Sedin M, Theliander H (2009) Changes in viscosity and boiling point elevation of black liquor when a fraction of lignin is removed - consequences in the evaporation stage. Appita J 62:383

    Google Scholar 

  25. Wennberg O (1989) Rheological properties of black liquor. In: International chemical recovery conference, Ottawa, Canada, pp 89–93

  26. Sandquist K (1983) Rheological properties and evaporation of black liquor at high solids content, Part I: Rheology. Pulp Pap Can 84:31–34

  27. Zaman AA, Fricke AL (1991) Viscosity of black liquor up to 130 degrees celsius and 84% solids. In: Forest products symposium. TAPPI

  28. Johansson M, Vamling L, Olausson L (2009) Heat transfer in evaporating black liquor falling film. Int J Heat Mass Transf 52:2759–2768

    Article  Google Scholar 

  29. Bouman S, Waalewijn R, Jong PD, Linden HJLJVD (1993) Design of falling-film evaporators in the dairy industry. Int J Dairy Technol 46:100–106. doi:10.1111/j.1471-0307.1993.tb01256.x

    Article  Google Scholar 

  30. Gourdon M, Innings F, Jongsma A, Vamling L (2015) Qualitative investigation of the flow behaviour during falling film evaporation of a dairy product. Exp Therm Fluid Sci 60:9–19

    Article  Google Scholar 

  31. Johansson M, Leifer I, Vamling L, Olausson L (2009) Falling film hydrodynamics of black liquor under evaporative conditions. Int J Heat Mass Transf 52:2769–2778

    Article  Google Scholar 

  32. Weise F, Scholl S (2009) Evaporation of pure liquids with increased viscosity in a falling film evaporator. Heat and Mass Transfer 45:1037–1046

    Article  Google Scholar 

Download references

Acknowledgments

This work was co-funded by the Swedish Energy Agency, Metso Power AB, Tetra Pak Processing Systems, Troëdssons forskningsfond and Chalmers Energy Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Gourdon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourdon, M., Karlsson, E., Innings, F. et al. Heat transfer for falling film evaporation of industrially relevant fluids up to very high Prandtl numbers. Heat Mass Transfer 52, 379–391 (2016). https://doi.org/10.1007/s00231-015-1556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1556-9

Keywords

Navigation