Skip to main content
Log in

Analytical analysis of the dual-phase-lag model of bioheat transfer equation during transient heating of skin tissue

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Dual-phase-lag model of bioheat transfer equation is utilized in treating the transient heat transfer problems in skin tissue considering prevalent heating conditions in thermal therapy applications, namely, pulse train and periodic heat flux. Comparisons between the presented analytical results for limiting cases and previous studies display an excellent agreement. The effects of temperature gradient relaxation time on the tissue temperature, damage, and also on the blood perfusion in skin tissue are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A 0 :

Frequency factor (s−1)

c :

Specific heat of tissue (J kg−1 K−1)

c b :

Specific heat of blood (J kg−1 K−1)

C :

Thermal wave speed (m s−1)

E a :

Activation energy of denaturation reaction (J mol−1)

k :

Tissue thermal conductivity (W m−1 K−1)

l :

Bromwich contour integration line

L :

Tissue slab length (m)

q :

Heat flux density (W m−2)

q 0 :

Incident heat flux amplitude (W m−2)

Q m :

Metabolic heat generation (W m−3)

R :

Universal gas constant (J mol−1 K−1)

s :

Laplace domain parameter

t :

Time variable (s)

T :

Tissue temperature (°C)

T 0 :

Initial tissue temperature (°C)

T b :

Blood temperature (°C)

U :

Unit Step function

w b :

Blood perfusion rate (s−1)

x :

Coordinate variable (m)

α:

Tissue thermal diffusivity (m2 s−1)

Γ :

Dimensionless temperature gradient relaxation time (Eq. 11)

Γ i :

Dimensionless incident heat flux exposure time

θ :

Dimensionless tissue temperature

Λ :

Dimensionless heat flux relaxation time (Eq. 11)

Λ 0 :

Dimensionless blood perfusion rate

λ :

Eigenvalues

ξ :

Dimensionless coordinate

ξ L :

Dimensionless tissue slab length

ρ :

Tissue mass density (kg m−3)

ρ b :

Blood mass density (kg m−3)

τ i :

Duration time of pulse train heat flux (s)

τ q :

Heat flux relaxation time (s)

τ T :

Temperature gradient relaxation time (s)

τ 1 :

Dimensionless heat flux relaxation time (Eq. 28)

τ2 :

Dimensionless temperature gradient relaxation time (Eq. 28)

φ :

Dimensionless metabolic heat generation (Eq. 28)

ψ :

Dimensionless metabolic heat generation (Eq. 11)

ω :

Incident heat flux frequency (s−1)

Ω :

Damage parameter

References

  1. Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting forearm. J Appl Physiol 1:93–122

    Google Scholar 

  2. Chen MM, Holmes KR (1980) Microvascular contributions in tissue heat transfer. Ann N Y Acad Sci 335:137–150

    Article  Google Scholar 

  3. Jiji LM, Weinbaum S, Lemons DE (1984) Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer-Part II: model formulation and solution. ASME J Biomech Eng 106:331–341

    Article  Google Scholar 

  4. Weinbaum S, Jiji LM (1985) A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. ASME J Biomech Eng 107:131–139

    Article  Google Scholar 

  5. Weinbaum S, Xu LX, Zhu L, Ekpene A (1997) A new fundamental bioheat equation for muscle tissue: Part I: blood perfusion term. ASME J Biomech Eng 119:278–288

    Article  Google Scholar 

  6. Liu J, Xu X (1999) Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating at the skin surface. IEEE Trans Biomed Eng 46:1037–1042

    Article  Google Scholar 

  7. Shih TC, Yuan P, Lin WL, Kou HS (2007) Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. Med Eng Phys 29:946–953

    Article  Google Scholar 

  8. Kaminski W (1990) Hyperbolic heat conduction equation for materials with a non-homogeneous inner structure. ASME J Heat Transf 112:555–560

    Article  Google Scholar 

  9. Rastegar JS (1989) Hyperbolic heat conduction in pulsed laser irradiation of tissue. In: Berry MJ, Harpole GM (eds) Thermal and optical interactions with biological and related composite materials proceedings of the SPIE, vol 1064. SPIE Press, Bellingham, pp 114–117

    Chapter  Google Scholar 

  10. Mitra K, Kumar S, Vedavarz A, Moallemi MK (1995) Experimental evidence of hyperbolic heat conduction in processed meat. ASME J Heat Transf 117:568–573

    Article  Google Scholar 

  11. Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus 247:431–433

    MathSciNet  Google Scholar 

  12. Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. Compte Rendus 246:3154–3155

    MathSciNet  Google Scholar 

  13. Liu J, Ren Z, Wang C (1995) Interpretation of living tissue’s temperature oscillations by thermal wave theory. Chin Sci Bull 40:1493–1495

    Google Scholar 

  14. Liu J, Chen X, Xu LX (1999) New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans Biomed Eng 46(4):420–428

    Article  Google Scholar 

  15. Ahmadikia H, Fazlali R, Moradi A (2012) Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue. Int Commun Heat Mass Transf 39:121–130

    Article  Google Scholar 

  16. Ahmadikia H, Moradi A, Fazlali R, Parsa AB (2012) Analytical solution of non-Fourier and Fourier bioheat transfer analysis during laser irradiation of skin tissue. J Mech Sci Technol 26(6):1937–1947

    Article  Google Scholar 

  17. Fazlali R, Ahmadikia H (2013) Analytical solution of thermal wave models on skin tissue under arbitrary periodic boundary conditions. Int J Thermophys 34:139–159

    Article  Google Scholar 

  18. Brorson SD, Fujimoto JG, Ippen EP (1987) Femtosecond electron heat-transport dynamics in thin gold film. Phys Rev Lett 59:1962–1965

    Article  Google Scholar 

  19. Taitel Y (1972) On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. Int J Heat Mass Transf 15:369–371

    Article  Google Scholar 

  20. Bai C, Lavine AS (1995) On the hyperbolic heat conduction and the second law of thermodynamics. ASME J Heat Transf 117:256–263

    Article  Google Scholar 

  21. Korner C, Bergmann HW (1998) The physical defects of the hyperbolic heat conduction equation. Appl Phys A 67:397–401

    Article  Google Scholar 

  22. Ahmadikia H, Rismanian M (2011) Analytical solution of non-Fourier heat conduction problem on a fin under periodic boundary conditions. J Mech Sci Technol 25(11):2919–2926

    Article  Google Scholar 

  23. Qiu TQ, Tien CL (1992) Short-pulse laser heating on metals. Int J Heat Mass Transf 35:719–726

    Article  Google Scholar 

  24. Qiu TQ, Tien CL (1993) Heat transfer mechanisms during short-pulse laser heating of metals. J Heat Transf 115:835–841

    Article  Google Scholar 

  25. Chan SH, Low MJD, Mueller WK (1971) Hyperbolic heat conduction in catalytic crystallites. AIChE J 17:1499–1501

    Article  Google Scholar 

  26. Joshi AA, Majumdar A (1993) Transient ballistic and diffusive phonon heat transport in thin films. J Appl Phys 74:31–39

    Article  Google Scholar 

  27. Chen JK, Beraun JE, Tzou DY (2000) A dual-phase-lag diffusion model for predicting thin-film growth. Semicond Sci Technol 15:235–241

    Article  Google Scholar 

  28. Chen JK, Beraun JE, Tzou DY (2005) Numerical investigation of ultrashort laser damage in semiconductors. Int J Heat Mass Transf 48(3–4):501–509

    Google Scholar 

  29. Tzou DY (1997) Macro- to microscale heat transfer: the lagging behavior. Taylor & Francis, Washington, DC

    Google Scholar 

  30. Xu F, Seffen KA, Lu TJ (2008) Non-Fourier analysis of skin biothermomechanics. Int J Heat Mass Transf 51:2237–2259

    Article  MATH  Google Scholar 

  31. Tzou DY (1995) An unified field approach for heat conduction from micro-to macro-scales. ASME J Heat Transf 117:8–16

    Article  Google Scholar 

  32. Tzou DY (1995) Experimental support for the lagging response in heat propagation. AIAA J Thermophys Heat Transf 9:686–693

    Article  Google Scholar 

  33. Antaki PJ (2005) New interpretation of non-Fourier heat conduction in processed meat. ASME J Heat Transf 127:189–193

    Article  Google Scholar 

  34. Arpaci VC (1966) Conduction heat transfer. Addisson Wesley Publication, Reading

    MATH  Google Scholar 

  35. Xu F, Lu TJ, Seffen KA (2008) Biothermomechanical behavior of skin tissue. Acta Mech Sin 24:1–23

    Article  MathSciNet  Google Scholar 

  36. Welch AJ (1984) The thermal response of laser irradiated tissue. IEEE J Quantum Electron 20(12):1471–1481

    Article  Google Scholar 

  37. Stoll AM, Greene LC (1959) Relationship between pain and tissue damage due to thermal radiation. J Appl Physiol 14:373–382

    Google Scholar 

  38. Yamada Y, Tien T, Ohta M (1995) Theoretical analysis of temperature variation of biological tissues irradiated by light. ASME/JSME Thermal Eng Conf 4:575–581

    Google Scholar 

  39. Torvi DA, Dale JD (1994) A finite element model of skin subjected to a flash fire. ASME J Biomech Eng 116:250–255

    Article  Google Scholar 

  40. Lam TT (2013) A unified solution of several heat conduction models. Int J Heat Mass Transf 56:653–666

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ahmadikia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askarizadeh, H., Ahmadikia, H. Analytical analysis of the dual-phase-lag model of bioheat transfer equation during transient heating of skin tissue. Heat Mass Transfer 50, 1673–1684 (2014). https://doi.org/10.1007/s00231-014-1373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1373-6

Keywords

Navigation