Skip to main content
Log in

Micro and nanoscale phenomenon in bioheat transfer

  • Special Issue
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Projected Cancer Incidence Table (2005) American Cancer Society

  2. Projected Cardiovascular Disease Statistics (2005) American Heart Association

  3. Garrido MJ, Williams M, Argenziano M (2004) Minimally invasive surgery for atrial fibrillation: toward a totally endoscopic, beating heart approach. J Card Surg 19(3):216–220

    Article  Google Scholar 

  4. Gillett MD et al (2004) Tissue ablation technologies for localized prostate cancer. Mayo Clin Proc 79(12):1547–1555

    Article  Google Scholar 

  5. Kacher DF, Jolesz FA (2004) MR imaging-guided breast ablative therapy. Radiol Clin North Am 42(5):947–962

    Article  Google Scholar 

  6. Erce C, Parks RW (2003) Interstitial ablative techniques for hepatic tumours. Br J Surg 90(3):272–289

    Article  Google Scholar 

  7. Diller KR, Ryan TP (1998) Heat transfer in living systems: current opportunities. J Heat Transf 120:810–829

    Article  Google Scholar 

  8. He X, Bischof JC (2003) Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng 31(5–6):355–422

    Article  Google Scholar 

  9. Gage AA, Baust J (1998) Mechanisms of tissue injury in cryosurgery. Cryobiology 37(3):171–186

    Article  Google Scholar 

  10. Hoffmann N, Bischof J (2002a) Mechanisms of injury caused by in vivo freezing. In: Benson E, Fuller B, Lane N (eds) Life in the frozen state. Taylor & Francis, London

    Google Scholar 

  11. Coger R, Toner M (1995) Preservation techniques for biomaterials. In: Bronzoni (ed) Handbook of biomedical engineering. CRC Press, Boca Raton, pp 1567–1577

  12. Karlsson J, Toner M (2000) Cryopreservation. In: Vacanti JP, Langer R (ed) Principes of tissue engineering. Academic, San Diego, pp 293–307

    Chapter  Google Scholar 

  13. Han B, Bischof JC (2004a) Engineering challenges in tissue preservation. Cell Preserv Technol 2(2):91–112

    Article  Google Scholar 

  14. Bowman H, Cravalho E, Wood M (1975) Theory, measurement and application of thermal properties of biomaterials. Ann Rev Biophys Bioeng 4(00):43–80

    Article  Google Scholar 

  15. Chato J (1985) Measurement of thermal properties of biological materials. In: Shitzer A, Eberhardt R (eds) Heat transfer in medicine and biology. Plenum, New York, pp 167–192

    Google Scholar 

  16. Diller KR, Valvano JW, Pearce JA (1999) Bioheat transfer. In: Kreith F (ed) The CRC handbook of thermal engineering. CRC press, Boca Raton, pp 4114–4187

  17. Zhang A et al (2004) Determination of thermal conducitivity of cryoprotectant solutions and cell suspensions. Cell Preserv Technol 2(2):157–162

    Article  Google Scholar 

  18. Grassl E, Barocas VH, Bischof JC (2004) Effects of freezing on the mechanical properties of blood vessels. ASME IMECE

  19. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J App Physiol 1:93–122

    Google Scholar 

  20. Charney (1992) Mathematical models of bioheat transfer. In: Cho YI (ed) Advances in heat transfer. Academic, San Diego

  21. Arkin H, Xu LX, Holmes KR (1994) Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans Biomed Eng 41(2):97–107

    Article  Google Scholar 

  22. He X et al (2004a) Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int J Hyperthermia 20(6):567–593

    Article  Google Scholar 

  23. Hoffmann NE, Bischof JC (2001a) Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part I—thermal response. J Biomech Eng 123(4):301–309

    Article  Google Scholar 

  24. Devireddy RV, Smith D, Bischof J (2002) Effect of microscale mass transport and phase change on numerical prediction of freezing in biological tissues. ASME J Heat Transf 124(2):365

    Article  Google Scholar 

  25. Bischof JC, Han B (2002) Cryogenic heat and mass transfer in biomedical applications. In: Proceedings of 12th international heat and mass transfer conference, Grenoble, France

  26. Diller K (1992) Modeling of bioheat transfer processes at high and low temperatures. In: Cho YI (eds) Advances in heat transfer. Academic, San Diego

  27. Levin RL, Cravalho EG, Huggins CE (1976) A membrane model describing the effect of temperature on the water conductivity of erythrocyte membranes at subzero temperatures. Cryobiology 13:415–429

    Article  Google Scholar 

  28. Toner M, Cravalho EG, Karel M (1990) Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys 67(3):1582–1593

    Article  Google Scholar 

  29. Caffrey M (1987) The combined and separate effects of low temperature and freezing on membrane lipid mesomorphic phase behavior: relevance to cryobiology. Biochim Biophys Acta 896(1):123–127

    Article  Google Scholar 

  30. Milhaud J (2004) New insights into water-phospholipid model membrane interactions. Biochim Biophys Acta 1663(1–2):19–51

    Google Scholar 

  31. Joly M (1965) A physico-chemical approach to the denaturation of proteins. Academic, London

    Google Scholar 

  32. Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25(4):281–305

    Article  Google Scholar 

  33. He X et al (2004b) In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury. Ann Biomed Eng 32(10):1384–1398

    Article  Google Scholar 

  34. Lepock JR (2005) Measurement of protein stability and protein denaturation in cells using differential scanning calorimetry. Methods 35(2):117–125

    Article  Google Scholar 

  35. Crowe JH et al (1989) Lipid phase transitions measured in intact cells with Fourier transform infrared spectroscopy. Cryobiology 26(1):76–84

    Article  Google Scholar 

  36. Quinn PJ (1989) Membrane lipid phase behavior and lipid–protein interactions. Subcell Biochem 14:25–95

    Google Scholar 

  37. Wolfe J, Bryant G (1999) Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology 39(2):103–129

    Article  Google Scholar 

  38. Parsegian VA, Rand RP, Rau DC (2000) Osmotic stress, crowding, preferential hydration, and binding: a comparison of perspectives. Proc Natl Acad Sci USA 97(8):3987–3992

    Article  Google Scholar 

  39. Steponkus PL, Lynch DV (1989) Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. J Bioener Biomembr 21(1):21–41

    Article  Google Scholar 

  40. Yamada T et al (2002) Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215(5):770–778

    Article  Google Scholar 

  41. Borel Rinkes IH et al (1992) Long-term functional recovery of hepatocytes after cryopreservation in a three-dimensional culture configuration. Cell Transplant 1(4):281–292

    Google Scholar 

  42. Pikal-Cleland KA et al (2000) Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase. Arch Biochem Biophys 384(2):398–406

    Article  Google Scholar 

  43. Bischof JC et al (2002) Lipid and protein changes due to freezing in Dunning AT-1 cells. Cryobiology 45(1):22–32

    Article  MathSciNet  Google Scholar 

  44. Smith DJ et al (1999) A parametric study of freezing injury in AT-1 rat prostate tumor cells. Cryobiology 39(1):13–28

    Article  Google Scholar 

  45. Lepock JR (2003) Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia 19(3):252–266

    Article  Google Scholar 

  46. Lepock JR et al (1983) Thermotropic lipid and protein transitions in chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can J Biochem Cell Biol 61(6):421–427

    Article  Google Scholar 

  47. Lepock JR et al (1988) Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response. J Cell Physiol 137(1):14–24

    Article  Google Scholar 

  48. Lepock JR, Frey HE, Ritchie KP (1993) Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. J Cell Biol 122(6):1267–1276

    Article  Google Scholar 

  49. Diller K, Cravalho E (1970) A cryomicroscope for the study of freezing and thawing process in biological cells. Cryobiology 7:191–199

    Article  Google Scholar 

  50. Mazur P (1984) Freezing of living cells: mechanisms and implications (Review). Am J Physiol 247:C125–C142

    Google Scholar 

  51. Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–69

    Article  Google Scholar 

  52. Toner M (1993) Nucleation of ice crystals inside biological cells. In: Steponkus P (ed) Advances in low-temperature biology. JAI Press Ltd, London, pp 1–51

    Google Scholar 

  53. Han B, Bischof JC (2004b) Direct cell injury associated with eutectic crystallization during freezing. Cryobiology 48(1):8–21

    Article  Google Scholar 

  54. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800

    Google Scholar 

  55. Wang S, Diller KR, Aggarwal SJ (2003) Kinetics study of endogenous heat shock protein 70 expression. J Biomech Eng 125(6):794–797

    Article  Google Scholar 

  56. Henriques FC Jr (1947) Studies of thermal injury. V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Path 43:489–502

    Google Scholar 

  57. Bhowmick S, Swanlund DJ, Bischof JC (2000) Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells. J Biomech Eng 122(1):51–59

    Article  Google Scholar 

  58. Devireddy RV et al (2003) Cryopreservation of collagen-based tissue equivalents. I. Effect of freezing in the absence of cryoprotective agents. Tissue Eng 9(6):1089–1100

    Article  Google Scholar 

  59. Neidert MR et al (2004) Cryopreservation of collagen-based tissue equivalents. II. Improved freezing in the presence of cryoprotective agents. Tissue Eng 10(1–2):23–32

    Google Scholar 

  60. Yarmush ML et al (1992) Hepatic tissue engineering. Development of critical technologies (Review). Ann N Y Acad Sci 665:238–252

    Article  Google Scholar 

  61. de Freitas RC et al (1997) Osmotic behavior and transport properties of human islets in a dimethyl sulfoxide solution. Cryobiology 35(3):230–239

    Article  Google Scholar 

  62. Bischof JC (2000) Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu Rev Biomed Eng 2:257–288

    Article  Google Scholar 

  63. Rubinsky B, Pegg DE (1988) A mathematical model for the freezing process in biological tissue. Proc R Soc Lond B Biol Sci 234(1276):343–358

    Article  Google Scholar 

  64. Diller KR, Raymond JF (1990) Water transport through a multicellular tissue during freezing: a network thermodynamic modeling analysis. Cryo Lett 11:151–162

    Google Scholar 

  65. de Freitas RC et al (1998) Network thermodynamic model of coupled transport in a multicellular tissue—the islet of Langerhans. Ann N Y Acad Sci 858:191–204

    Article  Google Scholar 

  66. Lachenbruch CA, Diller KR (1999) A network thermodynamic model of kidney perfusion with a cryoprotective agent. J Biomech Eng 121(6):574–583

    Article  Google Scholar 

  67. Levin RL, Cravalho EG, Huggins CE (1977) Water transport in a cluster of closely packed erythrocytes at subzero temperatures. Cryobiology 14(5):549–558

    Article  Google Scholar 

  68. Korniski B, Hubel A (1998) A model of low-temperature water transport for hepatocyte spheroids. Ann N Y Acad Sci 858:183–190

    Article  Google Scholar 

  69. Devireddy RV et al (1999) Liver freezing response of the freeze-tolerant wood frog, Rana sylvatica, in the presence and absence of glucose. II. Mathematical modeling. Cryobiology 38(4):327–338

    Article  Google Scholar 

  70. Bischof J, Christov K, Rubinsky B (1993) A morphological study of cooling rate response in normal and neoplastic human liver tissue: cryosurgical implications. Cryobiology 30(5):482–492

    Article  Google Scholar 

  71. Acker JP, Elliott JA, McGann LE (2001) Intercellular ice propagation: experimental evidence for ice growth through membrane pores. Biophys J 81(3):1389–1397

    Google Scholar 

  72. Irimia D, Karlsson JO (2002) Kinetics and mechanism of intercellular ice propagation in a micropatterned tissue construct. Biophys J 82(4):1858–1868

    Article  Google Scholar 

  73. Stott SL, Irimia D, Karlsson JO (2004) Parametric analysis of intercellular ice propagation during cryosurgery, simulated using monte carlo techniques. Technol Cancer Res Treat 3(2):113–123

    Google Scholar 

  74. Bischof JC, Rubinsky B (1993) Microscale heat and mass transfer of vascular and intracellular freezing in the liver. ASME J Heat Transf 115(4):1029–1035

    Article  Google Scholar 

  75. Pearce JA, Thomsen S (1995) Rate process analysis of thermal damage. In: Welch AJ, van Germert MJC (eds) Optical and thermal response of laser-irradiated tissue. Plenum, New York

    Google Scholar 

  76. Wright NT, Humphrey JD (2002) Denaturation of collagen via heating: an irreversible rate process. Annu Rev Biomed Eng 4:109–128

    Article  Google Scholar 

  77. Bhowmick P et al (2004a) In vitro assessment of the efficacy of thermal therapy in human benign prostatic hyperplasia. Int J Hyperthermia 20(4):421–439

    Article  Google Scholar 

  78. Bhowmick S et al (2004b) In vitro thermal therapy of AT-1 Dunning prostate tumours. Int J Hyperthermia 20(1):73–92

    Article  Google Scholar 

  79. Hoffmann NE, Bischof JC (2001b) Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part II–injury response. J Biomech Eng 123(4):310–316

    Article  Google Scholar 

  80. Chao BH, He X, Bischof JC (2004) Pre-treatment inflammation induced by TNF-alpha augments cryosurgical injury on human prostate cancer. Cryobiology 49(1):10–27

    Article  Google Scholar 

  81. Hoffmann NE, Bischof JC (2002b) The cryobiology of cryosurgical injury. Urology 60(2 Suppl 1):40–49

    Article  Google Scholar 

  82. Rupp CC et al (2002) Cryosurgical changes in the porcine kidney: histologic analysis with thermal history correlation. Cryobiology 45(2):167–182

    Article  MathSciNet  Google Scholar 

  83. Coad JE, Bischof JC (2003) Histologic differences between cryothermic and hyperthermic therapies. Therm Treat Tissue Energy Deliv Assess V Proc SPIE 4954:27–36

    Google Scholar 

  84. Aggarwal SJ et al (1994) Local macromolecular extravasation in thermal burns quantified by fluorescent video microscopy and computer vision. J Burn Care Rehabil 15(2):104–120

    Article  Google Scholar 

  85. Bhowmick S, Hoffmann NE, Bischof JC (2002) Thermal therapy of prostate tumor tissue in the dorsal skin flap chamber. Microvasc Res 64(1):170–173

    Article  Google Scholar 

  86. Hynynen K, McDannold N (2004) MRI guided and monitored focused ultrasound thermal ablation methods: a review of progress. Int J Hyperthermia 20(7):725–737

    Article  Google Scholar 

  87. Griffin RJ et al (2003) Arsenic trioxide induces selective tumour vascular damage via oxidative stress and increases thermosensitivity of tumours. Int J Hyperthermia 19(6):575–589

    Article  Google Scholar 

  88. Han B, Iftekhar A, Bischof JC (2004) Improved cryosurgery by use of thermophysical and inflammatory adjuvants. Technol Cancer Res Treat 3(2):103–111

    Google Scholar 

  89. Balasubramaniam SK, Bischof JC, Hubel A (2006) Water transport and IIF parameters for a connective tissue equivalent. Gyobiology 52(1):62–73

    Google Scholar 

  90. Eddy HA (1980) Alterations in tumor microvasculature during hyperthermia. Radiology 137(2):515–521

    Google Scholar 

Download references

Acknowledgment

The author was supported by a grant from the Alexander von Humboldt Foundation as well as 2R01CA075284. The author also thanks Dr. Rachana Visaria for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Bischof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischof, J.C. Micro and nanoscale phenomenon in bioheat transfer. Heat Mass Transfer 42, 955–966 (2006). https://doi.org/10.1007/s00231-006-0138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0138-2

Keywords

Navigation