Skip to main content
Log in

The behavior of harmonic functions at singular points of \(\mathsf {RCD}\) spaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this note we investigate the behavior of harmonic functions at singular points of \(\mathsf {RCD}(K,N)\) spaces. In particular we show that their gradient vanishes at all points where the tangent cone is isometric to a cone over a metric measure space with non-maximal diameter. The same analysis is performed for functions with Laplacian in \(L^{N+\varepsilon }\). As a consequence we show that on smooth manifolds there is no a priori estimate on the modulus of continuity of the gradient of harmonic functions which depends only on lower bounds of the sectional curvature. In the same way we show that there is no a priori Calderón–Zygmund theory for the Laplacian with bounds depending only on lower bounds of the sectional curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that a modulus of continuity is a continuous and bounded function \(\omega : (0,+\infty )\rightarrow (0,1]\) such that \(\omega (0+)=0\).

References

  1. Alexander, S., Kapovitch, V., Petrunin, A.: An optimal lower curvature bound for convex hypersurfaces in Riemannian manifolds. Ill. J. Math. 52(3), 1031–1033 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L.: Calculus, heat flow and curvature-dimension bounds in metric measure spaces. In: Proceedings of the ICM2018. http://cvgmt.sns.it/paper/3779/

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Honda, S.: Local spectral convergence in \({ RCD}^{*}(K, N)\) spaces. Nonlinear Anal. Part A 177, 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. Mem. Am. Math. Soc. 262, 1270 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Burago, D., Dmitri, Y., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

    Google Scholar 

  7. Burago, Y., Gromov, M., Perelman, G.: A. D. Aleksandrov spaces with curvatures bounded below, (Russian); translated from Uspekhi Mat. Nauk 47(2(284)), 3–51 (1992), 222 Russ. Math. Surv. 47(2), 1–58 (1992)

  8. Cavalletti, F., Milman, E.: The globalization theorem for the curvature-dimension condition. Invent. Math. 226(1), 1–137 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 2(144), 189–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below I. J. Differ. Geom. 46, 406–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below II. J. Differ. Geom. 54, 13–35 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below III. J. Differ. Geom. 54, 37–74 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Colding, T.H.: Large manifolds with positive Ricci curvature. Invent. Math. 124, 193–214 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colding, T.H.: Shape of manifolds with positive Ricci curvature. Invent. Math. 124, 175–191 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colding, T.H.: Ricci curvature and volume convergence. Ann. Math. 2(145), 477–501 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Philippis, G., Gigli, N.: From volume cone to metric cone in the nonsmooth setting. Geom. Funct. Anal. 26(6), 1526–1587 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. De Philippis, G., Gigli, N.: Non-collapsed spaces with Ricci curvature bounded from below. J. Ec. Polytech. Math. 5, 613–650 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Erbar, M., Kuwada, K., Sturm, K.T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201(3), 993–1071 (2015)

  19. Gigli, N.: Nonsmooth differential geometry—an approach tailored for spaces with Ricci curvature bounded from below. Mem. Am. Math. Soc. 251, v+161 (2014)

    MathSciNet  Google Scholar 

  20. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236(1113), vi+91 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Gigli, N.: Lecture Notes on Differential Calculus on \({\sf RCD}\) Spaces, preprint (2017). arXiv:1703.06829 [math.DG]

  22. Gigli, N., Mondino, A., Savaré, G.: Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. 3(111), 1071–1129 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Gigli, N., Han, B.: Sobolev spaces on warped products. J. Funct. Anal. 275, 2059–2095 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Güneysu, B., Pigola, S.: The Calderón–Zygmund inequality and Sobolev spaces on noncompact Riemannian manifolds. Adv. Math. 281, 353–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev Spaces on Metric Measure Spaces, volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  26. Jiang, R., Koskela, P., Yang, D.: Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions. J. Math. Pures Appl. (9) 101, 583–598 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kell, M.: A Note on Lipschitz Continuity of Solutions of Poisson Equations in Metric Measure Spaces, preprint (2013). arXiv:1307.2224 [math.MG]

  28. Ketterer, C.: Cones over metric measure spaces and the maximal diameter theorem. J. Math. Pures Appl. 103, 1228–1275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ketterer, C.: Obata’s rigidity theorem for metric measure spaces. Anal. Geom. Metr. Spaces 3(1), 278–295 (2015)

  30. Huang, X.-T.: On the asymptotic behavior of the dimension of spaces of harmonic functions with polynomial growth. J. für die reine und angewandte Math. 2020(762), 281–306 (2020)

  31. Jiang, R.: Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal. 266(3), 1373–1394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, P.: Geometric Analysis, Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  33. Li, S.: Counterexamples to the \(L^p\)-Calderón–Zygmund estimate on open manifolds. Ann. Global Anal. Geom. 57(1), 61–70 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mitsuishi, A., Yamaguchi, T.: Collapsing three-dimensional closed Alexandrov spaces with a lower curvature bound. Trans. Am. Math. Soc. 367, 2339–2410 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ohta, S.-I.: Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ. 36, 211–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Otsu, Y., Shioya, T.: The Riemannian structure of Alexandrov spaces. J. Differ. Geom. 39, 629–658 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Petrunin, A.: Alexandrov meets Lott–Villani–Sturm. Münster J. Math. 4, 53–64 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. PDE 44, 477–494 (2012)

    Article  MATH  Google Scholar 

  40. Sturm, K.T.: On the geometry of metric measure spaces I. Acta Math. 196, 65–131 (2006)

  41. Sturm, K.T.: On the geometry of metric measure spaces II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Villani, C.: Optimal Transport. Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (2009)

    Google Scholar 

Download references

Acknowledgements

We thank Nicola Gigli for encouraging us to write this note and for several useful discussions. G.D.P. is supported by an INDAM Grant “Geometric Variational Problems”. J.N.-Z. was supported by a MIUR SIR-Grant “Nonsmooth Differential Geometry” (RBSI147UG4) and a DGAPA-UNAM Postdoctoral Fellowship. J.N.-Z. also acknowledges support from CONACyT Project CB2016-283988-F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Núñez-Zimbrón.

Ethics declarations

Data availability

All data generated or analysed during this study are included in this published article and the cited references.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Philippis, G., Núñez-Zimbrón, J. The behavior of harmonic functions at singular points of \(\mathsf {RCD}\) spaces. manuscripta math. 171, 155–168 (2023). https://doi.org/10.1007/s00229-021-01365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01365-9

Keywords

Mathematics Subject Classification

Navigation