Skip to main content

Advertisement

Log in

Population pharmacokinetic analysis of bisoprolol in type 2 diabetic patients with hypertension

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Given that it has been reported that type 2 diabetes mellitus may affect the pharmacokinetics of a large number of drugs and that there are still no published population pharmacokinetic (PopPK) analyses in routinely treated patients with hypertension and type 2 diabetes mellitus as comorbid condition, the aim of this study was to determine PK variability of bisoprolol in 70 Serbian patients using the PopPK approach.

Methods

PopPK analysis was conducted using a nonlinear mixed effects model (NONMEM), version 7.3.0 (Icon Development Solutions). In our patients, a total daily dose of bisoprolol ranged from 1.25 to 10 mg. The drug was administrated orally as a single daily dose or in two divided doses per day.

Results

A wide range of the drug concentrations were noted (1–103 ng/mL) in the population consisted of the adult patients with type 2 diabetes mellitus. From a total of 21 separately assessed covariates, our results indicated that only creatinine clearance could have a potential impact on the variability of the clearance of bisoprolol.

Conclusion

Routine assessment of renal function should be carried out before the initiation of treatment with bisoprolol in order to individualize the dose and to prevent possible accumulation and adverse drug reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ, Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252

    CAS  Google Scholar 

  2. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Boudier HA, Zanchetti A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Erdine S, Kiowski W, Agabiti-Rosei E, Ambrosioni E, Lindholm LH, Viigimaa M, Adamopoulos S, Agabiti-Rosei E, Ambrosioni E, Bertomeu V, Clement D, Erdine S, Farsang C, Gaita D, Lip G, Mallion JM, Manolis AJ, Nilsson PM, O'Brien E, Ponikowski P, Redon J, Ruschitzka F, Tamargo J, van Zwieten P, Waeber B, Williams B, Management of Arterial Hypertension of the European Society of Hypertension; European Society of Cardiology (2007) 2007 guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 25:105–187

    Google Scholar 

  3. Nadelmann J, Frishman WH (1990) Clinical use of beta-adrenoceptor blockade in systemic hypertension. Drugs 39:862–876

    CAS  Google Scholar 

  4. Akbar S, Alorainy MS (2014) The current status of beta blockers’ use in the management of hypertension. Saudi Med J 35:1307–1317

    PubMed  PubMed Central  Google Scholar 

  5. Lithell HO (1991) Effect of antihypertensive drugs on insulin, glucose, and lipid metabolism. Diabetes Care 14:203–209

    CAS  Google Scholar 

  6. Lind L, Pollare T, Berne C, Lithell H (1994) Long-term metabolic effects of antihypertensive drugs. Am Heart J 128:1177–1183

    CAS  Google Scholar 

  7. Lithell HO (1996) Hyperinsulinemia, insulin resistance, and the treatment of hypertension. Am J Hypertens 9:150S–154S

    CAS  Google Scholar 

  8. Dézsi CA, Szentes V (2017) The real role of β-blockers in daily cardiovascular therapy. Am J Cardiovasc Drugs 17:361–373

    PubMed  PubMed Central  Google Scholar 

  9. Cruickshank JM (2007) Are we misunderstanding beta-blockers. Int J Cardiol 120:10–27

    CAS  Google Scholar 

  10. Hirst JA, Farmer AJ, Feakins BG, Aronson JK, Stevens RJ (2015) Quantifying the effects of diuretics and b-adrenoceptor blockers on glycaemic control in diabetes mellitus—a systematic review and meta-analysis. Br J Clin Pharmacol 79:733–743

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Momčilović S, Milovanović JR, Janković SM, Jovanović A, Tasić-Otašević S, Stanojević D, Krstić M, Šalinger-Martinović S, Radojković DD, Damjanović M, Živković M, Maričić B, Ranković G, Mihajlović A, Nikolić VN (2019) Population pharmacokinetic analysis of bisoprolol in patients with acute coronary syndrome. J Cardiovasc Pharmacol 73:136–142

    Google Scholar 

  12. de Groote P, Ennezat PV, Mouquet F (2007) Bisoprolol in the treatment of chronic heart failure. Vasc Health Risk Manag 3:431–439

    PubMed  PubMed Central  Google Scholar 

  13. Barrese V, Taglialatela M (2013) New advances in beta-blocker therapy in heart failure. Front Physiol 4:323

    PubMed  PubMed Central  Google Scholar 

  14. Tahara K, Kagawa Y, Takaai M, Taguchi M, Hashimoto Y (2008) Directional transcellular transport of bisoprolol in P-glycoprotein-expressed LLC-GA5-COL150 cells, but not in renal epithelial LLC-PK1 cells. Drug Metab Pharmacokinet 23:340–346

    CAS  Google Scholar 

  15. Borchard U (1990) Pharmacokinetics of beta-adrenoceptor blocking agents: clinical significance of hepatic and/or renal clearance. Clin Physiol Biochem 8:28–34

    Google Scholar 

  16. Nikolic VN, Jankovic SM, Deljanin-Ilic M, Stojanovic SS, Nikolic ML, Zivanovic S, Stokanovic D, Jevtovic-Stoimenov T, Milovanovic JR (2018) Population pharmacokinetic analysis of bisoprolol in patients with stable coronary artery disease. Eur J Drug Metab Pharmacokinet 43:35–44

    CAS  Google Scholar 

  17. Nikolic VN, Jevtovic-Stoimenov T, Velickovic-Radovanovic R, Ilic S, Deljanin-Ilic M, Marinkovic D, Apostolović S, Stanojevic D, Zivanovic S, Stefanovic N, Pesic S, Zecevic DR, Milovanovic JR, Jankovic SM (2013) Population pharmacokinetics of bisoprolol in patients with chronic heart failure. Eur J Clin Pharmacol 69:859–865

    Google Scholar 

  18. Nikolic VN, Jankovic SM, Dimitrijevic ZM, Sokolovic MJ, Andric BR, Petrovic DS, Jevtovic-Stoimenov T, Zivanovic S, Milovanovic JR (2016) Population pharmacokinetics of bisoprolol in hemodialysis patients with hypertension. Pharmacology 97:134–137

    CAS  Google Scholar 

  19. Dostalek M, Akhlaghi F, Puzanovova M (2012) Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet 51:481–499

    CAS  Google Scholar 

  20. Beal SL, Boeckmann AJ, Sheiner LB (2013) NONMEM users guide. Parts I–VIII ICON Development Solutions, Ellicott City

    Google Scholar 

  21. Milovanovic O, Milovanovic JR, Djukic A, Matovic M, Lucic AT, Glumbic N, Radovanovic A, Jankovic SM (2015) Population pharmacokinetics of 25-hydroxyvitamin D in healthy young adults. Int J Clin Pharmacol Ther 53:1–8

    CAS  Google Scholar 

  22. https://www.mdcalc.com/creatinine-clearance-cockcroft-gault-equation. (Last accessed: 10.04.2019)

  23. Milovanovic JR, Jankovic SM (2009) Population pharmacokinetics of lamotrigine in patients with epilepsy. Int J Clin Pharmacol Ther 47:752–760

    CAS  Google Scholar 

  24. Guidance for industry on population pharmacokinetics; availability Food and Drug Administration, HHS. Notice. (1999) Fed Regist 64:6663–4

  25. Taguchi M, Nozawa T, Igawa A, Inoue H, Takesono C, Tahara K, Hashimoto Y (2005) Pharmacokinetic variability of routinely administered bisoprolol in middle-aged and elderly Japanese patients. Biol Pharm Bull 28:876–881

    CAS  Google Scholar 

  26. Grevel J, Thomas P, Whiting B (1989) Population pharmacokinetic analysis of bisoprolol. Clin Pharmacokinet 17:53–63

    CAS  Google Scholar 

  27. Denic A, Glassock RJ, Rule AD (2016) Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis 23:19–28

    PubMed  PubMed Central  Google Scholar 

  28. Sternlicht H, Bakris GL (2017) The kidney in hypertension. Med Clin North Am 101:207–217

    Google Scholar 

  29. Fontela PC, Winkelmann ER, Ott JN, Uggeri DP (2014) Estimated glomerular filtration rate in patients with type 2 diabetes mellitus. Rev Assoc Med Bras 60:531–537

    Google Scholar 

  30. Kirch W, Rose I, Demers HG, Leopold G, Pabst J, Ohnhaus EE (1987) Pharmacokinetics of bisoprolol during repeated oral administration to healthy volunteers and patients with kidney or liver disease. Clin Pharmacokinet 13:110–117

    CAS  Google Scholar 

  31. Horikiri Y, Suzuki T, Mizobe M (1998) Pharmacokinetics and metabolism of bisoprolol enantiomers in humans. J Pharm Sci 87:289–294

    CAS  Google Scholar 

  32. Dostalek M, Court MH, Yan B, Akhlaghi F (2011) Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus. Br J Pharmacol 163:937–947

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lilja JJ, Kivistö KT, Neuvonen PJ (2000) Duration of effect of grapefruit juice on the pharmacokinetics of the CYP3A4 substrate simvastatin. Clin Pharmacol Ther 68:384–390

    CAS  Google Scholar 

  34. Paine MF, Criss AB, Watkins PB (2004) Two major grapefruit juice components differ in intestinal CYP3A4 inhibition kinetic and binding properties. Drug Metab Dispos 32:1146–1153

    CAS  Google Scholar 

  35. Tomlinson B, Chow MSS (2006) Stereoselective interaction of manidipine and grapefruit juice: a new twist on an old tale. Br J Clin Pharmacol 61:529–532

    CAS  PubMed  PubMed Central  Google Scholar 

  36. van der Weide J, Steijns LS (1999) Cytochrome P450 enzyme system: genetic polymorphisms and impact on clinical pharmacology. Ann Clin Biochem 36:722–729

    Google Scholar 

  37. Goh LL, Lim CW, Sim WC, Toh LX, Leong KP (2017) Analysis of genetic variation in CYP450 genes for clinical implementation. PLoS One 12:e0169233

    PubMed  PubMed Central  Google Scholar 

  38. Nozawa T, Taguchi M, Tahara K, Hashimoto Y, Igarashi N, Nonomura M, Kato B, Igawa A, Inoue H (2005) Influence of CYP2D6 genotype on metoprolol plasma concentration and beta-adrenergic inhibition during long-term treatment: a comparison with bisoprolol. J Cardiovasc Pharmacol 46:713–720

    CAS  Google Scholar 

  39. Pinzani M, Rosselli M, Zuckermann M (2011) Liver cirrhosis. Best Pract Res Clin Gastroenterol 25:281–290

    CAS  Google Scholar 

  40. Solanki JD, Makwana AH, Mehta HB, Gokhale PA, Shah CJ (2015) Body composition in type 2 diabetes: change in quality and not just quantity that matters. Int J Prev Med 6:122

    PubMed  PubMed Central  Google Scholar 

  41. Cvan Trobec K, Grabnar I, Kerec Kos M, Vovk T, Trontelj J, Anker SD, Rosano G, Lainscak M (2016) Bisoprolol pharmacokinetics and body composition in patients with chronic heart failure: a longitudinal study. Eur J Clin Pharmacol 72:813–822

    CAS  Google Scholar 

  42. Le Jeunne C, Poirier JM, Cheymol G, Ertzbischoff O, Engel F, Hugues FC (1991) Pharmacokinetics of intravenous bisoprolol in obese and non-obese volunteers. Eur J Clin Pharmacol 41:171–174

    Google Scholar 

  43. Cheymol G (1990) Comparison of beta-blocking agents pharmacokinetics in obese and non-obese subjects. Bull Acad Natl Med 174:959–967

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Slavoljub Živanović from the Laboratory for Functional Genomics and Proteomics, Research Center for Biomedicine, Faculty of Medicine, University of Niš, Serbia, for determination of the plasma concentrations of bisoprolol using the standard high-performance liquid chromatography system with fluorometric detector.

Authors’ individual contributions

S.M., V.N.N., S.M.J, and J.R.M. were involved in conception and design of the study. S.M., A.J., D.R., V.N.N., S.M.J, M.P., and J.R.M. were involved in acquisition, analysis, and interpretation of the data. S.M., A.J., and J.R.M. drafted the manuscript and all other authors critically revised the manuscript. All authors gave final approval of the manuscript to be published.

Funding

The study was supported by the Serbian Ministry of Education and Science grant no. III41007 and grant no. 175007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Momčilović.

Ethics declarations

The research was conducted according to the ethical guidelines of the 1975 Helsinki Declaration and approved by the Ethics Committee of the Faculty of Medicine, University of Niš, Niš, Serbia (decision number: 01-9337-4).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A.Electronic supplementary material

ESM 1

(DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momčilović, S., Jovanović, A., Radojković, D. et al. Population pharmacokinetic analysis of bisoprolol in type 2 diabetic patients with hypertension. Eur J Clin Pharmacol 76, 1539–1546 (2020). https://doi.org/10.1007/s00228-020-02937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-020-02937-6

Keywords

Navigation