Skip to main content

Advertisement

Log in

Sex-specific temperature dependence of foraging and growth of intertidal snails

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Predicting the biological impacts of climate change requires an understanding of how temperature alters organismal physiology and behavior. Given differences in reproductive physiology between sexes, increases in global temperature may be experienced differently by the males and females of a species. This study tested for sex-specific effects of increased air temperature on foraging, growth, and survival of an intertidal snail, Nucella ostrina (San Juan Island, Washington, 48–30′44″N, 123–08′43″W). Snails exhibited periodic peaks in foraging. Subjecting snails to elevated low tide air temperatures did not alter the timing or magnitude of this pattern. Despite similar temporal patterns in foraging, females foraged more than males, even when the risk of thermal stress was high. While males and females appear to have a similar body temperature threshold for optimal growth, females were more likely to cross that threshold resulting in a loss of body mass when exposed to daily increases in air temperature. These results suggest that the consequences of a warming climate in the short term may be different for males and females of N. ostrina, but also imply longer-term costs of reduced reproductive output, abundance, and distribution of this ubiquitous intertidal predator. Generally, this study points to the possible significance of sex-specific responses in an increasingly warm world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belisle BW, Stickle WB (1978) Seasonal patterns in the biochemical constituents and body component indexes of the muricid gastropod, Thais haemastoma. Biol Bull 155:259–272

    Article  Google Scholar 

  • Benton TG, Plaistow SJ, Coulson TN (2006) Complex population dynamics and complex causation: devils, details and demography. Proc R Soc Lond [Biol] 273:1173–1181

    Article  Google Scholar 

  • Bertness MD, Schneider DE (1976) Temperature relations of Puget Sound thaids in reference to their intertidal distribution. Veliger 19:47–58

    Google Scholar 

  • Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  Google Scholar 

  • Burrows MT, Hughes RN (1989) Natural foraging of the dog whelk Nucella lapillus Linnaeus the weather and whether to feed. J Molluscan Stud 55:285–296

    Article  Google Scholar 

  • Burrows MT, Hughes RN (1991) Optimal foraging decisions by dogwhelks, Nucella lapillus (L.): influences of mortality risk and rate-constrained digestion. Funct Ecol 5:461–475

    Article  Google Scholar 

  • Chapperone C, Seuront L (2010) Behavioral thermoregulation in a tropical gastropod: links to climate change scenarios. Glob Change Biol 17:1740–1749

    Article  Google Scholar 

  • Coulson T, Catchpole E, Albon S, Morgan B, Pemberton J, Clutton-Brock T, Crawley M, Grenfell B (2001) Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292:1528–1531

    Article  CAS  Google Scholar 

  • Dahlhoff EP, Buckley BA, Menge BA (2001) Physiology of the rocky intertidal predator Nucella ostrina along an environmental stress gradient. Ecology 82:2816–2829

    Google Scholar 

  • Dunkin SB, Hughes RN (1984) Behavioural components of prey selection by dogwhelks, Nucella lapillus, feeding on barnacles, Semibalanus balanoides, in the laboratory. J Exp Mar Bio Ecol 79:91–103

    Article  Google Scholar 

  • Etter RJ (1996) The effect of wave action, prey type, and foraging time on growth of the predatory snail Nucella lapillus (L.). J Exp Mar Bio Ecol 196:341–356

    Article  Google Scholar 

  • Foden WB, Butchart SHM, Vié JC, Akçakaya HR, Angulo A, DeVantier LM (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8(6):e65427

    Article  CAS  Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GC, Holt RD (2010) A framework for community interactions under climate change. TREE 25:325–331

    Google Scholar 

  • Harley CDG (2008) Tidal dynamics, topographic orientation, and temperature-mediated mass mortalities on rocky shores. Mar Ecol Prog Ser 371:37–46

    Google Scholar 

  • Harley CDG, Helmuth BST (2003) Local and regional scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation. Limnol Oceanogr 48:1498–1508

    Article  Google Scholar 

  • Helmuth BST, Harley CDG, Halpin P, O’Donnell M, Hofmann GE, Blanchette C (2002) Climate change and latitudinal patterns of intertidal thermal stress. Science 298:1015–1017

    Article  CAS  Google Scholar 

  • Huey RB, Pianka ER (2007) Lizard thermal biology: do genders differ? Am Nat 170:473–478

    Article  Google Scholar 

  • Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE (2102) Predicting organismal vulnerability to climate warming: roles of behavior, physiology and adaptation. Philos Trans R Soc Lond B Biol Sci 367:1665–1679

    Article  Google Scholar 

  • Hughes RN, Burrows MT (1994) An interdisciplinary approach to the study of foraging behaviour in the predatory gastropod, Nucella lapillus (L.). Ethol Ecol Evol 6:75–85

    Article  Google Scholar 

  • Janowitz SA, Fischer K (2011) Opposing effects of heat stress on male versus female reproductive success in Bicyclus anynana butterflies. J Therm Biol 36:283–287

    Article  Google Scholar 

  • Karl I, Janowitz SA, Fischer K (2008) Altitudinal life history variation and thermal adaptation in the copper butterfly Lycaena tityrus. Oikos 117:778–788

    Article  Google Scholar 

  • Karl I, Sorensen JG, Loeschcke V, Fischer K (2009) HSP70 expression in the copper butterfly Lycaena tityrus across altitudes and temperatures. J Evol Biol 22:172–178

    Article  CAS  Google Scholar 

  • Kuo ES, Sanford E (2009) Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Mar Ecol Prog Ser 388:137–146

    Article  Google Scholar 

  • Lailvaux SP (2007) Interactive effects of sex and temperature on locomotion in reptiles. Integr Comp Biol 47:189–199

    Article  Google Scholar 

  • Lambert P, Dehnel PA (1974) Seasonal variations in biochemical composition during the reproductive cycle of the intertidal gastropod Thais lamellosa (Gastropoda, Prosobranchia). Can J Zool 52:305–318

    Article  CAS  Google Scholar 

  • Marko PB, Palmer AR, Vermeij GJ (2003) Resurrection of Nucella ostrina (Gould, 1852), lectotype designation for N. emarginata (Deshayes, 1839), and molecular genetic evidence of Pleistocene speciation. Veliger 46:77–85

    Google Scholar 

  • Menge BA, Olson AM, Dahlhoff EP (2002) Environmental stress, bottom-up effects, and community dynamics: integrating molecular-physiological and ecological approaches. Integr Comp Biol 42:892–908

    Article  Google Scholar 

  • Nguyen TM, Bressac C, Chevrier C (2012) Heat stress affects male reproduction in a parasitoid wasp. J Insect Physiol 59:248–254

    Article  Google Scholar 

  • Palmer AR (1982) Growth in marine gastropods: a nondestructive technique for independently measuring shell and body weight. Malacologia 23:63–73

    Google Scholar 

  • Palmer AR (1983) Growth rate as a measure of food value in thaidid gastropods: assumptions and implications for prey morphology and distribution. J Exp Mar Biol Ecol 73:95–124

    Article  Google Scholar 

  • Palmer AR (1984) Prey selection by thaidid gastropods: some observations and experimental field tests of foraging models. Oecologia 62:162–172

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst 37:637–669

    Google Scholar 

  • Pincebourde S, Sanford E, Helmuth BST (2008) Body temperature during low tide alters the feeding performance of a top intertidal predator. Limnol Oceanogr 53:1562–1573

    Article  Google Scholar 

  • Rawlings TA (1999) Adaptations to physical stresses in the intertidal zone: the egg capsules of neogastropod molluscs. Am Zool 39:230–243

    Google Scholar 

  • Rilov G, Gasith A, Benayahu Y (2005) Effect of disturbance on foraging: whelk activity on wave-exposed rocky shores with minimal tidal range. Mar Biol 147:421–428

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  • Roux O, Le Lann C, Van Alphen J, Van Baaren J (2010) How does heat shock affect the life history traits of adults and progeny of the aphid parasitoid Aphidius avenae (Hymenoptera: Aphidiidae)? Bull Entomol Res 100:543–549

    Article  CAS  Google Scholar 

  • Russell BD, Harley CD, Wernberg T, Mieszkowska N, Widdicombe S, Hall-Spencer JM, Connell SD (2012) Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems. Biol Lett 8:164–166

    Article  Google Scholar 

  • Santini G, Thompson R, Tendi C, Hawkins S, Hartnoll R, Chelazzi G (2004) Intra-specific variability in the temporal organization of foraging activity in the limpet Patella vulgata. Mar Biol 144:1165–1172

    Article  Google Scholar 

  • Seavy DK (1977) Seasonal gametogenesis and egg laying in the prosobranch gastropods Nucella lamellosa, Nucella emarginata, Searlesia dira and Amphissa columbiana on the Oregon coast, Dissertation. Oregon State University, Corvallis, OR

  • Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr Comp Biol 42:780–789

    Article  Google Scholar 

  • Sorensen J, Kristensen TN, Kristensen K, Loeschcke V (2007) Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster. Exp Gerontol 42:1123–1129

    Article  CAS  Google Scholar 

  • Sorte CJB, Hofmann GE (2005) Thermotolerance and heat-shock protein expression in Northeastern Pacific Nucella species with different biogeographical ranges. Mar Biol 146:985–993

    Article  CAS  Google Scholar 

  • Spight TM, Emlen J (1976) Clutch sizes of two marine snails with a changing food supply. Ecology 57:1162–1178

    Article  Google Scholar 

  • Stearns SC (1976) Life history tactics: a review of the ideas. Q Rev Biol 51:3–47

    Article  CAS  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, New York, NY

    Google Scholar 

  • Stickle WB (1973) The reproductive physiology of the intertidal prosobranch Thais lamellosa. I. Seasonal changes in the rate of oxygen consumption and body component indexes. Biol Bull 144:511–524

    Article  Google Scholar 

  • Tognetti R (2012) Adaptation to climate change of dioecious plants: does gender balance matter? Tree Physiol 32:1321–1324

    Article  Google Scholar 

  • Van Allen BG, Dunham AE, Asquith CM, Rudolf VHW (2012) Life history predicts risk of species decline in a stochastic world. Proc R Soc Lond [Biol] 279:2691–2697

    Article  Google Scholar 

  • von Ende CN (2001) Repeated-measures analysis: growth and other time-dependent measures. In: Scheiner SM, Gurevitch J (eds) The design and analysis of ecological experiments. Oxford University Press, Oxford, pp 134–157

    Google Scholar 

  • West L (1986) Interindividual variation in prey selection by the snail Thais emarginata. Ecology 67:798–809

    Article  Google Scholar 

  • Xu X, Yang F, Xiao X, Zhang S, Korpelainen H, Li C (2008) Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant Cell Physiol 31:850–860

    CAS  Google Scholar 

  • Yamane L, Gilman SE (2009) Opposite responses by an intertidal predator to increasing aquatic and aerial temperatures. Mar Ecol Prog Ser 393:27–36

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by NSF award OCE-0824903 to EC, the Blinks Endowment at the Friday Harbor Laboratories (FHL), and an NSF REU site grant to FHL (NSF DBI-1004193). We thank the Carrington Lab, H. Hayford, S. E. Gilman, C. Neufeld, J. Burnaford, D. Padilla, R. R. Strathmann, FHL Maintenance Crew, and K. and Q. Vaughn for advice and assistance, and two anonymous reviewers for comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vaughn.

Additional information

Communicated by J. P. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughn, D., Turnross, O.R. & Carrington, E. Sex-specific temperature dependence of foraging and growth of intertidal snails. Mar Biol 161, 75–87 (2014). https://doi.org/10.1007/s00227-013-2316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2316-3

Keywords

Navigation