Skip to main content

Advertisement

Log in

Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Increasing dissolution of anthropogenic-released carbon dioxide into the world’s oceans is causing ocean acidification (OA). OA is thought to negatively affect most marine-calcifying organisms, notably cold-water corals (CWC), which may be especially sensitive due to the deep and cold waters they normally thrive in. However, the impact of OA on CWC is difficult to predict. Recorded distributions of CWC are rarely linked to in situ water chemistry, and the boundaries of their distributions are not clearly defined. The fjord Comau in Chilean Patagonia features pronounced pH gradients, and up to 0.5 pH units have been recorded both vertically (at some sites within 50 m depth) and less distinct horizontally (from head to mouth). The cosmopolite coral Desmophyllum dianthus grows along the course of the fjord and of the entire pH range. It occurs in shallow depths (below 12 m, pH 8.1) as part of a deep-water emergence community, but also in 225 m depth at a pH of 7.4. Based on pH and total alkalinity, data calculations of the associated carbonate chemistry revealed that this CWC thrives commonly close the aragonite (the orthogonal crystal form of calcium carbonate, the mineral structure of coral skeletons) saturation horizon and even below. This suggests a high adaptation potential of D. dianthus to adjust its calcification performance to conditions thermodynamically unfavourable for the precipitation of aragonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adkins JF, Henderson GM, Wang SL, O’Shea S, Mokadem F (2004) Growth rates of the deep-sea scleractini Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227(3–4):481–490

    Article  CAS  Google Scholar 

  • Allemand D, Ferrier-Pages C, Furla P, Houlbreque F, Puverel S, Reynaud S, Tambutte E, Tambutte S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol 3:453–467

    Article  Google Scholar 

  • Allemand D, Tambutte E, Zoccola D, Tambutte S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, New York. doi:10.1007/978-94-007-0114-4_9

  • Atkinson JM, Cuet P (2008) Possible effects of ocean acidification on coral reef biogeochemistry, topics for research. Mar Ecol Prog Ser 373:249–256

    Article  CAS  Google Scholar 

  • Blanco JL, Thomas AC, Carr ME, Strub PT (2001) Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile. J Geophys Res 106:11451–11467

    Article  Google Scholar 

  • Brooke S, Young CM (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Prog Ser 397:153–161

    Article  Google Scholar 

  • Cairns SD (1982) Antarctic and Subantarctic Scleractinia. Antarctic Res Ser 34(1):74

  • Cairns SD, Försterra G, Häussermann V (2005) A review of the Scleractinia (Cnidaria, Anthozoa) of Chile, with the description of two new species. Zootaxa 118:15–46

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04. doi:10.1029/2004JC002671

    Article  Google Scholar 

  • Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35:L19609. doi:10.1029/2008GL035072

    Article  Google Scholar 

  • CARINA Group (2008) CARINA Data Synthesis Project. ORNL/CDIAC-157, NDP-091. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge Tennessee. doi:10.3334/CDIAC/otg.ndp091

  • Cohen AL, Holcomb M (2009) Why corals care about ocean acidification. Oceanography 22:118–127

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  CAS  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119

    Article  Google Scholar 

  • Dickson A, Goyet C (1991) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. http//cdiac.ornl.gov/oceans/Handbook_2007.html

  • Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practices for ocean CO2 measurements, vol 3. PICES Special Publication, 191pp

  • Dodds LA, Roberts JM, Taylor AC, Marubini F (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349:205–214

    Article  CAS  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification, the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169

    Article  CAS  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle, a test of our knowledge of earth as a system. Science 290:291–296

    Article  CAS  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Millero FJ, Lamb MF, Greeley D, Bullister JL, Key RM, Peng TH, Kozyr A, Ono T, Wong CS (2002) In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochem Cycles 16(4):1144

    Article  Google Scholar 

  • Feely RA, Sabine CL, Kitack L, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  CAS  Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811

    Article  CAS  Google Scholar 

  • Form A, Riebesel U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Change Biol 18:843–853

    Article  Google Scholar 

  • Försterra G, Häussermann V (2003) First report on large scleractinian (Cnidaria, Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool Verhand (Leiden) 345:117–128

    Google Scholar 

  • Försterra G, Häussermann V (2008) Unusual symbiotic relationships between microendolithic phototrophic organisms and azooxanthellate cold-water corals from Chilean fjords. Mar Ecol Prog Ser 370:121–125

    Article  Google Scholar 

  • Försterra G, Beuck L, Häussermann V, Freiwald A (2005) Shallow-water Desmophyllum dianthus (Scleractinia) From Chile, characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. Cold-water corals and ecosystems. Springer, Berlin, p 937–977

    Google Scholar 

  • Freiwald A, Fosså SJH, Grehan A, Koslow A, Roberts JM (2004) Cold-water coral reefs, out of sight—no longer out of mind. UNEP-WCMC, Cambridge

    Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  Google Scholar 

  • Gallardo VA, Försterra G, Häussermann V, Faundez J (2005) Hallazgo de sistemas bacterianos sulfurosos someros asociados a la actividad hidrotermal del Fiordo, X Región. Annual COLACMAR meeting, May16-20 2005, Viña del Mar, Chile

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Goreau TF, Goreau NI, Goreau TF (1979) Corals and coral reefs. Sci Am 241:124–136

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. ICES J Mar Sci 50:839–866

    Google Scholar 

  • Holcomb MC, Cohen AL, McCorkle DC (2010) Gender bias in the coral response to ocean acidification. In: 2010 Ocean sciences meeting, Portland, OR

  • Hoppe CJM, Langer G, Rokitta SD, Wolf-Gladrow DA, Rost B (2012) Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies. Biogeosciences 9:2401–2405

    Article  CAS  Google Scholar 

  • Jantzen C, Laudien J, Häussermann V, Försterra G, Richter C (2012) Cold water corals exhibit CaCO3 precipitation comparable to their tropical counterparts—but only in situ. In: 5th symposium on deep-sea corals 2012

  • Jantzen C, Laudien J, Sokol S, Försterra, G, Häussermann V, Kupprat F, Richter C (2013) In situ short-term growth rates of a cold-water coral. Marine Freshw Res (accepted)

  • Jury C, Whitehead RF, Szmant A (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (=Madracis mirabilis sensu Wells, 1973), bicarbonate concentrations best predict calcification rates. Glob Change Biol 16:1632–1644

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN. http//cdiac.ornl.gov/oceans/co2rprt.html

  • Maier C, Hegeman J, Weinbauer MG, Gattuso JP (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680. doi:10.5194/bg-6-1671-2009

    Article  CAS  Google Scholar 

  • Maier C, Watremez P, Taviani M, Weinbauer MG, Gattuso JP (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc R Soc B 279:1716–1723

    Article  CAS  Google Scholar 

  • Marubini F, Ferrier-Pagès C, Furla P, Allemande D (2008) Coral calcification responds to seawater acidification, a working hypothesis towards a physiological mechanism. Coral Reefs 27:491–499

    Article  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012a) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Climate Change 2:1–5. doi:10.1038/nclimate1473

    Article  Google Scholar 

  • McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra G, López Correa M, Maier C, Rüggeberg A, Taviani M (2012b) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34

    Article  CAS  Google Scholar 

  • Meibom A, Mostefaoui S, Cuif JP, Dauphin Y, Houlbreque F, Dunbar R, Constantz BR (2007) Biological forcing controls the chemistry of reef-building coral skeleton. Geophys Res Lett 34:L02601

    Article  Google Scholar 

  • Millero FK (2006) Chemical oceanography, 3rd edn. CRC, Boca Raton

    Google Scholar 

  • Montero P, Daneri G, González HE, Iriarte JL, Tapia FJ, Lizárraga L, Sánchez N, Pizarro O (2011) Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia, implications for the transfer of carbon within pelagic food webs. Cont Shelf Res 31:202–215

    Article  Google Scholar 

  • Morales CE, Blanco JL, Barun M, Reyes R, Silva N (1993) Chlorophyll-a distribution and associated oceanographic conditions in the upwelling region of northern Chile during the winter and spring. Deep Sea Res 43:267–289

    Article  Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:83–104

    Article  Google Scholar 

  • Naumann MS, Orejas C, Wild C, Ferrier-Pages C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Expr Biol 214:3570–3576

    Article  CAS  Google Scholar 

  • Nemzer BV, Dickson AG (2005) The stability and reproducibility of tris buffers in synthetic seawater. Mar Chem 96:237–242

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Pantoja S, Iriarte JL, Daneri G (2011) Oceanography of the Chilean Patagonia. Cont Shelf Res 31:149–153

    Article  Google Scholar 

  • Riebesell U (2008) Climate change, acid test for marine biodiversity. Nature 454:46–47

    Article  CAS  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, p 260

    Google Scholar 

  • Ries J (2011) A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim Cosmochim Acta. doi:10.1016/j.gca.2011.04.025

    Google Scholar 

  • Risk MJ, Heikoop JM, Snow MG, Beukens R (2002) Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131

    Article  Google Scholar 

  • Roberts JM, Anderson RM (2002) A new laboratory method of monitoring deep-sea coral polyp behaviour. Hydrobiologia 471:143–148

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 28:543–547

    Article  Google Scholar 

  • Roberts MJ, Wheeler AJ, Freiwald A, Cairns S (2009) Cold-water corals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to mid-and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300

    Article  CAS  Google Scholar 

  • Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Climate Change 1:308–311. doi:10.1038/NCLIMATE1200

    Article  CAS  Google Scholar 

  • Rost B, Zondervan I, Wolf-Gladrow D (2008) Sensitivity of phytoplankton to future changes in ocean carbonate chemistry, current knowledge, contradictions and research directions. Mar Ecol Prog Ser 373:227–237

    Article  CAS  Google Scholar 

  • Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campell DM (1993) The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperature 0 to 45 °C. Mar Chem 44:249–267

    Article  CAS  Google Scholar 

  • Sánchez N, González HE, Iriarte JL (2011) Trophic interactions of pelagic crustaceans in Comau Fjord (Chile), their role in the food web structure. J Plankton Res 33(8):1212–1229

    Article  Google Scholar 

  • Schlitzer R (2011) Ocean Data View, http//odv.awi.de

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatype coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Article  CAS  Google Scholar 

  • Schwabe E, Försterra G, Häussermann V, Melzer RR, Schrödl M (2006) Chitons (Mollusca, Polyplacophora) from the southern Chilean Comau Fjord, with reinstatement of Tonicia calbucensis Plate, 1897. Zootaxa 1341:1–27

    Google Scholar 

  • Silva N (2008) Dissolved oxygen, pH, and nutrients in the austral Chilean channels and fjords. In: Silva N, Palma S (eds) Progress in the oceanographic knowledge of Chilean inner waters, from Puerto Montt to Cape Horn. Comité Oceanográfico Nacional-Pontificia Universidad Católica de Valparaíso, Valparaíso, pp 37–43

    Google Scholar 

  • Smith SV, Kinsey DW (1978) Calcification and organic carbon metabolism as indicated by carbon dioxide. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, Paris, pp 469–484

    Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res II 56(5):54–577

    Google Scholar 

  • Tambutté S, Holcomb M, Ferrier-Pages C, Reynaud S, Tambutte E, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408(1–2):58–78

    Article  Google Scholar 

  • Thresher RE, Tilbrook B, Fallon S, Wilson NC, Adkins J (2011) Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar Ecol Prog Ser 442:87–99

    Article  Google Scholar 

  • Torres R, Frangópulos M, Hamamé M, Montecino V, Maureira C, Pizarro G, Reid B, Valle-Levinson A, Blanco JL (2011a) Nitrate to silicate ratio variability and the composition of micro-phytoplankton blooms in the inner-fjord of Seno Ballena (Strait of Magellan, 54°S). Cont Shelf Res 31:149–366

    Article  Google Scholar 

  • Torres R, Pantoja S, Harada N, González HE, Daneri G, Frangopulos M, Rutllant JA, Duarte CM, Rúiz-Halpern S, Mayol E, Fukasawa M (2011b) Air-sea CO2 fluxes along the coast of Chile. From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J Geophys Res 116:C09006. doi:10.1029/2010JC006344

    Article  Google Scholar 

  • Trotter J, Montagna P, McCulloch M, Silenzi S, Reynaud S, Mortimer G, Martin S, Ferrier-Pagès C, Gattuso JP, Rodolfo-Metalpa R (2011) Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet Sci Lett 303:163–173

    Article  CAS  Google Scholar 

  • Tsounis G, Orejas C, Reynaud S, Gili J-M, Allemand D, Ferrier-Pagès C (2010) Prey-capture rates in four Mediterranean cold water corals. Mar Ecol Prog Ser 398:149–155

    Article  CAS  Google Scholar 

  • Venn AA, Tambutté E, Holcomb M, Laurent J, Allemand D, Tambutté S (2013) Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc Natl Acad Sci USA 110(5):1634–1639. doi:10.1073/pnas.1216153110

    Article  CAS  Google Scholar 

  • Vézina AF, Hoegh-Guldberg O (2008) Effects of ocean acidification on marine ecosystems—introduction to theme section. Mar Ecol Progr Ser 373:199–201

    Article  Google Scholar 

  • Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc B 275:1767–1773

    Article  Google Scholar 

Download references

Acknowledgments

This is paper No. 61 of the Huinay Scientific Field Station. We thank the team of the Fundacion Huinay especially Reinhard Fitzek, Emma Plotnek, Dan Genter and Soledad Gonzales. We acknowledge the help of all scientific divers involved in the field work. We are indebted to assistants during CTD profiling, namely Richard Steinmetz, Sebastian Baumgarten, Michael Sswat, Stefanie Sokol, Franziska Kupprat, Santiago Pineda Metz, Maria Ernsthaler and Aaron Mascarenhas. Thanks to Riccardo Rodolfo-Metalpa and an anonymous reviewer, who help us to considerably improve the ms. Last not least special thanks to Emma Plotnek and Ruth Alheit for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jantzen.

Additional information

Communicated by R. Hill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2013_2254_MOESM1_ESM.doc

Desmophyllum dianthus occurrence. Sites of D. dianthus sightings by SCUBA or ROV investigations. Where a depth range is given. D. dianthus was not recorded continuously, but repeatedly and commonly found (DOC 31 kb)

227_2013_2254_MOESM2_ESM.eps

Fjord profiles conducted at 5 May 2010 till 60 m with a CTD-probe in vertical (with depth) and horizontal (fjord’s course) resolution. Negatively increasing values indicate the direction towards the fjord head; 0 corresponds to the fjord mouth and positive values reach into the Gulf of Ancud. a pH (in NBS scale); b oxygen saturation (EPS 76233 kb)

227_2013_2254_MOESM3_ESM.eps

Vertical profile at mid-fjord showing oxygen saturation. The CTD depth profile till 336 m was conducted on 24 May 2010 (EPS 9387 kb)

227_2013_2254_MOESM4_ESM.eps

pH conditions in the Southern Pacific. Data were obtained from the CARINA project (The CARINA Group 2008, CARINA Data Synthesis Project. ORNL/CDIAC-157, NDP-091. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.ndp091) and pH of sea water was calculated with ‘Ocean Data View’ (Schlitzer 2011, using depth, temperature, TA and DIC); the transect was conducted along the 30°–32.5°S (EPS 36082 kb)

227_2013_2254_MOESM5_ESM.eps

Fjord profiles 2011. Profiles with a CTD-probe in vertical (with depth) and horizontal (fjord’s course) resolution; negatively increasing values indicate the direction towards the fjord head; 0 corresponds to the fjord mouth and positive values reach into the Gulf of Ancud. PH is given on the total scale. a (24, 25 February 2011; b 3 March 2011; white areas where data were not available (EPS 36040 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jantzen, C., Häussermann, V., Försterra, G. et al. Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile). Mar Biol 160, 2597–2607 (2013). https://doi.org/10.1007/s00227-013-2254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2254-0

Keywords

Navigation