Skip to main content

Advertisement

Log in

Temporal patterns of populations in a warming world: a modelling framework

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In this paper, we present an approach for describing the environmentally induced temporal pattern of structured populations by partial integro-differential equations. Populations are structured according to size or stage. Growth, energy allocation and stage transitions are affected by environmental conditions of which temperature, photoperiod, water depth and food supply were taken into account. The resulting modelling framework was applied to describe, analyse and predict alterations in populations with continuous development, populations with distinct state structures and interacting populations. Our exemplary applications consider populations of freshwater Amphipoda, Isopoda and Odonata. The model was capable of simulating life cycle alterations in dependence on temperature in interaction with other environmental factors: (1) population dynamics, (2) seasonal regulation, (3) water depth-dependent dispersal, (4) intraguild predation and (5) consumer-resource dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

B(s, n, E):

Reproduction (mm−1 day−1)

b(s, n):

Total number of incremental offspring (day−1)

b max :

Maximum birth rate (mm−β day−1)

C :

Day length change

C crit :

Critical day length change

D :

Day length (h)

D crit :

Critical day length (h)

E :

Environmental conditions representing temperature, water depth, level of nutrition, day length, day length change

f in :

Environmental response of flow into main reach

f out :

Environmental response of flow out of main reach

f(s, n, E):

Balance (mm−1 day−1)

F :

Level of nutrition

F H :

Half-saturation level of nutrition

g(s, E):

Growth

Growth in length (mm day−1)

Growth in mass (mg day−1)

l :

Length (mm)

L :

Lag for water depth-dependent dispersal (day)

M(s, n, E):

Mortality (mm−1 day−1)

m :

Mortality rate (day−1)

n :

Population density distribution over size

… over length (mm−1)

… over mass (mg−1)

P(s, n, E):

Transition (mm−1 day−1)

p imax :

Maximum transition rate from stage i (mm−1 day−1)

Q10:

Shape parameter of temperature response (°C−1)

r max :

Maximum growth rate (day−1)

s :

Size

Body length (mm)

Head length (mm)

Body mass (mg)

s max :

Maximum size for reproduction (mm or mg)

s min :

Minimum size for reproduction (mm or mg)

s i :

Size threshold for transition from stage i (mm)

(mg)

t :

Time (day)

T :

Temperature (°C)

T max :

Maximum temperature (°C)

T min :

Minimum temperature (°C)

T opt :

Optimum temperature (°C)

w :

Body mass (mg)

W :

Water depth (cm)

α:

Shape parameter for day length control

β:

Size dependency of reproduction

γ:

Anabolic rate (mg−2/3 day−1)

κ:

Shape parameter for water depth response

λ:

Catabolic rate (mg day−1)

ν:

Shape parameter for transitions

μ:

Mortality rate (day−1)

τ:

Critical water depth (cm)

Ω:

Latitude

Π(s):

Density function of the size of hatched larvae

References

  • Andersen HE, Kronvang B, Larsen SE, Hoffmann CC, Jensen TS, Rasmussen EK (2006) Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Sci Total Environ 365:223–237

    Article  CAS  Google Scholar 

  • Andersson E (1969) Life cycle and growth of Asellus aquaticus (L.). Institute of Freshwater Research, Drottningholm

    Google Scholar 

  • Angilletta MJ Jr, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Article  Google Scholar 

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–239

    Article  CAS  Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83

    Article  CAS  Google Scholar 

  • Both C, Asch MV, Bijlsma RG, Burg ABVD, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83

    Article  Google Scholar 

  • Boulton AJ (1989) Oversummering refuges of aquatic macroinvertebrates in two intermittent streams in central Victoria, Australia. Trans R Soc S Aust 113:23–34

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (2007) Evolution of animal photoperiodism. Ann Rev Ecol Evol Syst 38:1–25

    Article  Google Scholar 

  • Braune E, Richter O, Söndgerath D, Suhling F (2008) Voltinism flexibility of a riverine dragonfly along thermal gradients. Global Chang Biol 14:470–482

    Article  Google Scholar 

  • Buckley LB, Urban MC, Angiletta M-J, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species distribution models? Ecol Lett 13:1041–1054

    Article  Google Scholar 

  • Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley Books, Colchester

    Google Scholar 

  • Corbet PS, Suhling F, Söndgerath D (2006) Voltinism of Odonata: a review. Int J Odonatol 9:1–44

    Article  Google Scholar 

  • Crowley PH, Nisbet RM, Gurney WSC, Lawton JH (1987) Population regulation in animals with complex life-histories: formulation of a damselfly model. Adv Ecol Res 17:1–59

    Article  Google Scholar 

  • Cushing DH (1975) Marine ecology and fisheries. Cambridge University Press, Cambridge

    Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Flenner I, Richter O, Suhling F (2010) Rising temperature and development in dragonfly populations at different latitude. Freshw Biol 55:397–410

    Article  Google Scholar 

  • Gee JHR (1988) Population dynamics and morphometrics of Gammarus pulex L.: evidence pf seasonal food limitation in a freshwater detritivore. Freshw Biol 19:333–343

    Article  Google Scholar 

  • Gerstengarbe FW, Badeck F, Hattermann F, Krysanova V, Lahmer W, Lasch P, Stock M, Suckow F, Wechsung F, Werner PC (2003) Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst-und Landwirtschaft sowie die Ableitung erster Perspektiven. PIK Rep 83:1–96

    Google Scholar 

  • Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417:70–73

    Article  CAS  Google Scholar 

  • Graça MAS, Maltby L, Calow P (1994) Comparative ecology of Gammarus pulex (L.) and Asellus aquaticus (L.) II: fungal preferences. Hydrobiologia 281:163–170

    Article  Google Scholar 

  • Griebeler EM, Seitz A (2007) Effects of increasing temperatures on population dynamics of the zebra mussel Dreissena polymorpha: implications from an individual-based model. Oecologia 151:530–543

    Article  Google Scholar 

  • Helmuth B, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Ann Rev Physiol 67:177–201

    Article  CAS  Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455

    Article  Google Scholar 

  • Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Ann Rev Ecol Evol Syst 72:127–145

    Article  CAS  Google Scholar 

  • Howe RW (1967) Temperature effects on embryonic development in insects. Ann Rev Entomol 12:15–42

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Summary for policy makers. IPCC Secretariat, Geneva

    Google Scholar 

  • Kaiser TS, Neumann D, Heckel DG (2011) Timing the tides: genetic control of diurnal and lunar emergence times is correlated in the marine midge Clunio marinus. BMC Genet 12:1–12

    Article  Google Scholar 

  • Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268

    Google Scholar 

  • Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD (2005) Trophic cascades across ecosystems. Nature 437:880–883

    Article  CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Article  Google Scholar 

  • Kozlowski J, Czarnoleski M, Danko M (2004) Can optimal resource allocation models explain why extotherms grow larger in cold? 1. Integr Comp Biol 44:480–493

    Article  CAS  Google Scholar 

  • Krenek S, Berendonk TU, Petzoldt T (2011) Thermal performance curves of Paramecium caudatum: a model selection approach. Eur J Protist 47:124–137

    Article  Google Scholar 

  • Leberfinger K, Bohman I, Herrmann J (2010) Drought impact on stream detritivores: experimental effects on leaf litter breakdown and life cycles. Hydrobiologia 652:247–254

    Article  Google Scholar 

  • Logan JD, Ledder G, Wolesensky W (2009) Type II functional response for continuous, physiologically structured models. J Theor Biol 259:373–381

    Article  Google Scholar 

  • McFeeters BJ, Frost PC (2011) Temperature and the effects of elemental food quality on Daphnia. Freshw Biol 56:1447–1455

    Article  Google Scholar 

  • Moenickes S, Schneider A-K, Mühle L, Rohe L, Richter O, Suhling F (2011) From population-level effects to individual response: modelling temperature dependence in Gammarus pulex. J Exp Biol 214. doi:10.1242/jeb.061945

  • Norling U (1984) Photoperiodic control of larval development in Leucorrhina dubia (vander Linden): a comparison between populations from Northern and Southern Sweden (Anisoptera: Libellulidae). Odonatologica 13:529–550

    Google Scholar 

  • Ohlberger J, Edeline E, Vøllestad LA, Stenseth NC, Claessen D (2011) Temperature-driven regime shifts in the dynamics of size-structured populations. Am Nat 177:211–223

    Article  Google Scholar 

  • Otermin A, Basaguren A, Pozo J (2002) Re-colonization by the macroinvertebrate community after a drought period in a first-order stream (Agüera basin, Northern Spain). Limnetica 21:117–128

    Google Scholar 

  • Padeffke T, Suhling F (2003) Temporal priority and intraguild predation in temporary waters: an experimental study using Namibian desert dragonflies. Ecol Entomol 28:340–347

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  Google Scholar 

  • Panov VE, McQueen DJ (1998) Effects of temperature on individual growth rate and body size of a freshwater amphipod. Can J Zool 76:1107–1116

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13:1–13

    Article  Google Scholar 

  • Partridge L, French V (1996) Thermal evolution of ectotherm body size: Why grow bigger in the cold? In: Johnston IA (ed) Animals and temperature: phenotypic and evolutionary adaptation. Cambridge University Press, Cambridge, pp 265–292

    Chapter  Google Scholar 

  • Petereit C, Haslob H, Kraus G, Clemmesen C (2008) The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae. Mar Biol 154:295–306

    Article  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    Article  Google Scholar 

  • Richter O (2009) Spatio-temporal patterns of gene flow and dispersal under temperature increase. Math Biosc 218:15–23

    Article  Google Scholar 

  • Richter O, Suhling F, Müller O, Kern D (2008) A model for predicting the emergence of dragonflies in a changing climate. Freshw Biol 53:1868–1880

    Article  Google Scholar 

  • Robson B, Chester E, Mitchell B, Matthews T (2008) Identification and management of refuges for aquatic organisms. National Water Commission, Canberra

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  • Schlief J, Mutz M (2009) Effect of sudden flow reduction on the decomposition of alder leaves (Alnus glutinosa [L.] Gaertn.) in a temperate lowland stream: a mesocosm study. Hydrobiologia 624:205–217

    Article  CAS  Google Scholar 

  • Schlief J, Mutz M (2011) Leaf decay processes during and after a supra-seasonal hydrological drought in a temperate lowland stream. Int J Hydrobiol 96(6):633–655

    Article  CAS  Google Scholar 

  • Sommer U, Aberle N, Engel A, Hansen T, Lengfellner K, Sandow M, Wohlers J, Zöllner E, Riebesell U (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150:668–681

    Google Scholar 

  • Söndgerath D, Rummland J, Suhling F (2012) Large-scale effects of rising temperatures: modelling a dragonfly’s life cycle and range in Europe. Ins Conserv Div. doi:10.1111/j.1752-4598.2011.00182.x

  • Trudgill DL, Honek A, Li D, Van Straalen NM (2005) Thermal time—concepts and utility. Ann Appl Biol 146:1–14

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  Google Scholar 

  • Van Buskirk J (1989) Density-dependent cannibalism in larval dragonflies. Ecology 70:1442–1449

    Article  Google Scholar 

  • Vasseur DA, McCann KS (2005) A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am Nat 166:184–198

    Article  Google Scholar 

  • Weikai Y, Hunt LA (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84:607–614

    Article  Google Scholar 

  • Welton JS, Clarke RT (1980) Laboratory studies on the reproduction and growth of the amphipod, Gammarus pulex (L.). J Anim Ecol 49:581–592

    Article  Google Scholar 

  • Wendler R, Millard P (1996) Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of Betula pendula. Tree Physiol 16:153–159

    Article  Google Scholar 

  • Wissinger SA (1992) Niche overlap and the potential for competition and intraguild predation between size-structured populations. Ecology 73:1431–1444

    Article  Google Scholar 

  • Woodward G, Hildrew AC (2001) Invasion of a stream food web by a new top predator. J Anim Ecol 70:273–288

    Article  Google Scholar 

  • Yang LH, Rudolf VHW (2010) Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol Lett 13:1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG) for funding our studies within the priority programme 1162 Aquashift (Ri 534/11-1,2,3), (Mu 1464/2-1,2,3) and all members of the Running Water Cluster for fruitful cooperation. This article is in commemoration of the late Alfred Seitz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Moenickes.

Additional information

Communicated by U. Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 840 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moenickes, S., Frassl, M., Schlief, J. et al. Temporal patterns of populations in a warming world: a modelling framework. Mar Biol 159, 2605–2620 (2012). https://doi.org/10.1007/s00227-012-1996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1996-4

Keywords

Navigation