Skip to main content

Advertisement

Log in

Kelp as a trophic resource for marine suspension feeders: a review of isotope-based evidence

  • Review, Concept, and Synthesis
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Kelp forests are enormously productive, and they and adjacent habitats support large populations of suspension feeders. What do these suspension feeders eat? Intuitively, we might expect that kelp primary production is a key form of trophic support for these animals. Indeed, a large and growing number of studies using carbon stable isotope data, typically collected over short time periods, have asserted that detritus from kelps is an important, and in some cases the main, food source for coastal benthic suspension feeders. This view has been incorporated into several textbooks and review papers covering kelp forest ecosystems, and loss of trophic support for benthic suspension feeders is now often invoked as an ecosystem consequence of top-down or other impacts on kelp forests. More direct evidence, however, suggests that these animals mainly eat phytoplankton and, in some cases, bacteria or zooplankton. Because isotope values of pure coastal phytoplankton, uncontaminated with detritus, are difficult to obtain, present studies have largely relied on single measurements from offshore environments or from the literature, which typically reflects offshore values. We review the evidence showing that phytoplankton isotope values can, and are expected to, vary widely in coastal waters and that inshore phytoplankton may often be enriched in 13C compared to offshore phytoplankton. This unaccounted-for variation may have systematically biased the results of such trophic studies toward finding large contributions of kelp detritus to suspension-feeder diets. We review some key stable isotope studies and put forth evidence for alternative explanations of the isotope patterns presented. Finally, we make recommendations for future isotope studies and describe several approaches for progress in this area. New techniques, particularly flow cytometry and compound-specific stable isotope analysis, provide ways to shed light on this interesting and important ecological issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan E, Ambrose S, Richoux N, Froneman P (2010) Determining spatial changes in the diet of nearshore suspension-feeders along the South African coastline: stable isotope and fatty acid signatures. Estuar Coast Shelf Sci 87:463–471

    CAS  Google Scholar 

  • Attwood C, Lucas M, Probyn T, McQuaid C, Fielding P (1991) Production and standing stocks of the kelp Macrocystis laevis Hay at the Prince Edward Islands, sub-Antarctic. Polar Biol 11:129–133

    Google Scholar 

  • Barnes C, Jennings S, Polunin NC, Lancaster JE (2008) The importance of quantifying inherent variability when interpreting stable isotope field data. Oecologia 155:227–235

    Google Scholar 

  • Beninger P, Decottignies P (2005) What makes diatoms attractive for suspensivores? The organic casing and associated organic molecules of Coscinodiscus perforatus are quality cues for the bivalve Pecten maximus. J Plankton Res 27:11–17

    CAS  Google Scholar 

  • Bidigare R, Kennicutt M, Keeneykennicutt W, Macko S (1991) Isolation and purification of chlorophyll-a and chlorophyll-b for the determination of stable carbon and nitrogen isotope compositions. Anal Chem 63:130–133

    CAS  Google Scholar 

  • Bode A, Alvarez-Ossorio MT, Varela M (2006) Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar Ecol Prog Ser 318:89–102

    CAS  Google Scholar 

  • Brett M, Kainz M, Taipale S, Seshan H (2009) Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc Natl Acad Sci 106:21197–21201

    CAS  Google Scholar 

  • Burton R, Snodgrass J, Gifford-Gonzalez D, Guilderson T, Brown T, Koch P (2001) Holocene changes in the ecology of northern fur seals: insights from stable isotopes and archaeofauna. Oecologia 128:107–115

    Google Scholar 

  • Bustamante RH, Branch GM (1996) The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa. J Exp Mar Biol Ecol 196:1–28

    Google Scholar 

  • Bustamante RH, Branch GM, Eekhout S (1995) Maintenance of an exceptional intertidal grazer biomass in South Africa—subsidy by subtidal kelps. Ecology 76:2314–2329

    Google Scholar 

  • Cifuentes L, Sharp J, Fogel M (1988) Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary. Limnol Oceanogr 33:1102–1115

    CAS  Google Scholar 

  • Coma R, Ribes M, Gili J, Zabala M (2000) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15:448–453

    Google Scholar 

  • Corbisier T, Petti M, Skowronski R, Brito T (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable isotope analysis. Polar Biol 27:75–82

    Google Scholar 

  • Cranford P, Grant J (1990) Particle clearance and absorption of phytoplankton and detritus by the sea scallop Placopecten magellanicus Gmelin. J Exp Mar Biol Ecol 137:105–122

    Google Scholar 

  • Dayton P (1985) Ecology of kelp communities. Ann Rev Ecol Syst 16:215–245

    Google Scholar 

  • Duarte C, Cebrian J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766

    CAS  Google Scholar 

  • Dugan J, Hubbard D, McCrary M, Pierson M (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58:25–40

    Google Scholar 

  • Duggins D, Eckman J (1994) The role of kelp detritus in the growth of benthic suspension feeders in an understory kelp forest. J Exp Mar Biol Ecol 176:53–68

    Google Scholar 

  • Duggins D, Eckman J (1997) Is kelp detritus a good food for suspension feeders? effects of kelp species, age and secondary metabolites. Mar Biol 128:489–495

    Google Scholar 

  • Duggins D, Simenstad C, Estes J (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170–173

    CAS  Google Scholar 

  • Dunton KH (1985) Trophic dynamics in marine nearshore systems of the Alaskan high Arctic, PhD thesis, University of Alaska Fairbanks, pp 247

  • Dunton K (2001) δ15N and δ13C measurements of Antarctic peninsula fauna: Trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112

    Google Scholar 

  • Dunton K, Schell D (1987) Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: δ13C evidence. Mar Biol 93:615–625

    CAS  Google Scholar 

  • Dunton K, Weingartner T, Carmack E (2006) The nearshore western Beaufort Sea ecosystem: circulation and importance of terrestrial carbon in arctic coastal food webs. Prog Oceanogr 71:362–378

    Google Scholar 

  • Evans S, Anderson W, Jochem F (2006) Spatial variability in Florida Bay particulate organic matter composition: combining flow cytometry with stable isotope analyses. Hydrobiol 569:151–165

    CAS  Google Scholar 

  • France R, Cattaneo A (1998) Delta C-13 variability of benthic algae: effects of water colour via modulation by stream current. Freshw Biol 39:617–622

    Google Scholar 

  • Fredriksen S (2003) Food web studies in a Norwegian kelp forest based on stable isotope (delta C-13 and delta N-15) analysis. Mar Ecol Prog Ser 260:71–81

    CAS  Google Scholar 

  • Fry B, Sherr E (1984) δ13C measurements as indicators of carbon flow in marine and fresh-water ecosystems. Contrib Mar Sci 27:13–47

    CAS  Google Scholar 

  • Fry B, Wainright S (1991) Diatom sources of 13C-rich carbon in marine food webs. Mar Ecol Prog Ser 76:149–157

    Google Scholar 

  • Gaye-Siessegger J, Focken U, Muetzel S, Abel H, Becker K (2004) Feeding level and individual metabolic rate affect δ13C and δ15N values in carp: implications for food web studies. Oecologia 138:175–183

    Google Scholar 

  • Gili J-M, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol 13:316–324

    CAS  Google Scholar 

  • Goering J, Alexander V, Haubenstock N (1990) Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a North Pacific bay. Estuar Coast Shelf Sci 30:239–260

    CAS  Google Scholar 

  • Gollety C, Riera P, Davoult D (2010) Complexity of the food web structure of the Ascophyllum nodosum zone evidenced by a δ13C and δ15N study. J Sea Res 64:304–312

    Google Scholar 

  • Graham MH (2004) Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7:341–357

    Google Scholar 

  • Graham BS, Koch PL, Newsome SD, McMahon KW, Aurioles D (2010) Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. In: West JB, Bowen GJ, Dawson TE (eds) Isoscapes: understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp 299–318

    Google Scholar 

  • Hamilton S, Sippel S, Bunn S (2005) Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnol Oceanogr Methods 3:149–157

    CAS  Google Scholar 

  • Hill JM, McQuaid CD, Kaehler S (2006) Biogeographic and nearshore-offshore trends in isotope ratios of intertidal mussels and their food sources around the coast of southern Africa. Mar Ecol Prog Ser 318:63–73

    CAS  Google Scholar 

  • Hill J, McQuaid C, Kaehler S (2008) Temporal and spatial variability in stable isotope ratios of SPM link to local hydrography and longer term SPM averages suggest heavy dependence of mussels on nearshore production. Mar Biol 154:899–909

    CAS  Google Scholar 

  • Hunt G, Stabeno P (2005) Oceanography and ecology of the Aleutian Archipelago: spatial and temporal variation. Fish Oceanogr 14:292–306

    Google Scholar 

  • Jacob U, Brey T, Fetzer I, Kaehler S, Mintenbeck K, Dunton K, Beyer K, Struck U, Pakhomov EA, Arntz WE (2006) Towards the trophic structure of the Bouvet Island marine ecosystem. Polar Biol 29:106–113

    Google Scholar 

  • Jaschinski S, Brepohl D, Sommer U (2008) Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses. Mar Ecol Prog Ser 358:103–114

    Google Scholar 

  • Jørgensen CB (1990) Bivalve filter feeding : hydrodynamics, bioenergetics, physiology and ecology. Olsen & Olsen, Fredensborg

    Google Scholar 

  • Kaehler S, Pakhomov EA, McQuaid CD (2000) Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis. Mar Ecol Prog Ser 208:13–20

    Google Scholar 

  • Kaehler S, Pakhomov EA, Kalin RM, Davis S (2006) Trophic importance of kelp-derived suspended particulate matter in a through-flow sub-Antarctic system. Mar Ecol Prog Ser 316:17–22

    CAS  Google Scholar 

  • Kang C, Sauriau P, Richard P, Blanchard G (1999) Food sources of the infaunal suspension-feeding bivalve Cerastoderma edule in a muddy sandflat of Marennes Oleron Bay, as determined by analyses of carbon and nitrogen stable isotopes. Mar Ecol Prog Ser 187:147–158

    Google Scholar 

  • Kang C, Choy E, Son Y, Lee J, Kim J, Kim Y, Lee K (2008) Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses. Mar Biol 153:1181–1198

    Google Scholar 

  • Kokkinakis SA, Wheeler PA (1987) Nitrogen uptake and phytoplankton growth in coastal upwelling regions. Limnol Oceanogr 32:1112–1123

    CAS  Google Scholar 

  • Kostadinov T, Siegel D, Maritorena S, Guillocheau N (2007) Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA. J Geophys Res, Oceans 112: C07011. doi:10.1029/2006JC003526

  • Lastra M, Page H, Dugan J, Hubbard D, Rodil I (2008) Processing of allochthonous macrophyte subsidies by sandy beach consumers: estimates of feeding rates and impacts on food resources. Mar Biol 154:163–174

    Google Scholar 

  • Laws E, Popp B, Cassar N, Tanimoto J (2002) 13C discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Funct Plant Biol 29:323–333

    CAS  Google Scholar 

  • Levinton JS, Ward JE, Shumway SE (2002) Feeding responses of the bivalves Crassostrea gigas and Mytilus trossulus to chemical composition of fresh and aged kelp detritus. Mar Biol 141:367–376

    CAS  Google Scholar 

  • Linley E, Newell R, Bosma S (1981) Heterotrophic utilization of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida): 1. development of microbial communities associated with the degradation of kelp mucilage. Mar Ecol Prog Ser 4:31–41

    Google Scholar 

  • Lubetkin S, Simenstad C (2004) Multi-source mixing models to quantify food web sources and pathways. J Appl Ecol 41:996–1008

    Google Scholar 

  • Lucas AJ, Dupont CL, Tai V, Largier JL, Palenik B, Franks PJS (2011) The green ribbon: multiscale physical control of phytoplankton productivity and community structure over a narrow continental shelf. Limnol Oceanogr 56:611–626

    CAS  Google Scholar 

  • McLeod R, Wing S (2007) Hagfish in the New Zealand fjords are supported by chemoautotrophy of forest carbon. Ecology 88:809–816

    Google Scholar 

  • Michener RH, Kaufman L (2007) Stable isotope ratios as tracers. In: Michener RH, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Pub, Malden, pp 238–282

    Google Scholar 

  • Miller T, Brodeur R, Rau G (2008) Carbon stable isotopes reveal relative contribution of shelf-slope production to the northern California Current pelagic community. Limnol Oceanogr 53:1493–1503

    CAS  Google Scholar 

  • Monteiro P, James A, Sholtodouglas A, Field J (1991) The δ13C trophic position isotope spectrum as a tool to define and quantify carbon pathways in marine food webs. Mar Ecol Prog Ser 78:33–40

    Google Scholar 

  • Moore J, Semmens B (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11:470–480

    Google Scholar 

  • Mordy C, Stabeno P, Ladd C, Zeeman S, Wisegarver D, Salo S, Hunt G (2005) Nutrients and primary production along the eastern Aleutian Island Archipelago. Fish Oceanogr 14:55–76

    Google Scholar 

  • Nadon MO, Himmelman JH (2006) Stable isotopes in subtidal food webs: have enriched carbon ratios in benthic consumers been misinterpreted? Limnol Oceanogr 51:2828–2836

    CAS  Google Scholar 

  • Nakatsuka T, Handa N, Wada E, Wong C (1992) The dynamic changes of stable isotopic ratios of carbon and nitrogen in suspended and sedimented particulate organic matter during a phytoplankton bloom. J Mar Res 50:267–296

    CAS  Google Scholar 

  • Nelson J (1993) Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. J Mar Res 51:155–179

    CAS  Google Scholar 

  • Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61

    Google Scholar 

  • Newell R, Field J, Griffiths C (1982) Energy balance and significance of microorganisms in a kelp bed community. Mar Ecol Prog Ser 8:103–113

    Google Scholar 

  • Newell RIE, Kemp WM, Hagy JD III, Cerco CF, Testa JM, Boynton WR (2007) Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: comment on Pomeroy et al. (2006). Mar Ecol Prog Ser 341:293–298

    Google Scholar 

  • Norderhaug KM, Fredriksen S, Nygaard K (2003) Trophic importance of Laminaria hyperborea to kelp forest consumers and the importance of bacterial degradation to food quality. Mar Ecol Prog Ser 255:135–144

    CAS  Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Gibbs MM, Andrew NL, Norkko J, Schwarz AM (2007) Trophic structure of coastal antarctic food webs associated with changes in sea ice and food supply. Ecology 88:2810–2820

    CAS  Google Scholar 

  • Officer C, Smayda T, Mann R (1982) Benthic filter feeding: a natural eutrophication control. Mar Ecol Prog Ser 9:203–210

    Google Scholar 

  • Overmyer J, MacNeil M, Fisk A (2008) Fractionation and metabolic turnover of carbon and nitrogen stable isotopes in black fly larvae. Rap Comm Mass Spec 22:694–700

    CAS  Google Scholar 

  • Page HM, Lastra M (2003) Diet of intertidal bivalves in the Ria de Arosa (NW Spain): evidence from stable C and N isotope analysis. Mar Biol 143:519–532

    CAS  Google Scholar 

  • Page HM, Reed DC, Brzezinski MA, Melack JM, Dugan JE (2008) Assessing the importance of land and marine sources of organic matter to kelp forest food webs. Mar Ecol Prog Ser 360:47–62

    Google Scholar 

  • Paine R (2002) Trophic control of production in a rocky intertidal community. Science 296:736–739

    CAS  Google Scholar 

  • Parnell A, Inger R, Bearhop S, Jackson A (2010) Source partitioning using stable isotopes: coping with too much variation. Plos One. doi:10.1371/journal.pone.0009672

    Google Scholar 

  • Pel R, Floris V, Gons H, Hoogveld H (2004) Linking flow cytometric cell sorting and compound-specific 13C analysis to determine population-specific isotopic signatures and growth rates in cyanobacteria-dominated lake plankton. J Phycol 37:857–866

    Google Scholar 

  • Perga M, Kainz M, Mazumder A (2008) Terrestrial carbon contribution to lake food webs: could the classical stable isotope approach be misleading? Can J Fish Aquat Sci 65:2719–2727

    CAS  Google Scholar 

  • Perissinotto R, Duncombe Rae C (1990) Occurrence of anticyclonic eddies on the Prince Edward Plateau (Southern Ocean): effects on phytoplankton biomass and production. Deep-Sea Res Part A 37:777–793

    Google Scholar 

  • Perissinotto R, Duncombe Rae C, Boden B, Allanson B (1990) Vertical stability as a controlling factor of the marine phytoplankton production at the Prince-Edward archipelago (Southern Ocean). Mar Ecol Prog Ser 60:205–209

    Google Scholar 

  • Perry R, Thompson P, Mackas D, Harrison P, Yelland D (1999) Stable carbon isotopes as pelagic food web tracers in adjacent shelf and slope regions off British Columbia, Canada. Can J Fish Aquat Sci 56:2477–2486

    CAS  Google Scholar 

  • Phillips D, Gregg J (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269

    Google Scholar 

  • Post D (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Google Scholar 

  • Rau G, Riebesell U, Wolf-Gladrow D (1996) A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Mar Ecol Prog Ser 133:275–285

    CAS  Google Scholar 

  • Ribes M, Coma R, Gili J (1999) Heterogeneous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria : Octocorallia) over a year cycle. Mar Ecol Prog Ser 183:125–137

    Google Scholar 

  • Ricciardi A, Bourget E (1999) Global patterns of macroinvertebrate biomass in marine intertidal communities. Mar Ecol Prog Ser 185:21–35

    Google Scholar 

  • Rooker J, Turner J, Holt S (2006) Trophic ecology of sargassum-associated fishes in the Gulf of Mexico determined from stable isotopes and fatty acids. Mar Ecol Prog Ser 313:249–259

    CAS  Google Scholar 

  • Sackmann B, Mack L, Logsdon M, Perry M (2004) Seasonal and inter-annual variability of SeaWiFS-derived chlorophyll a concentrations in waters off the Washington and Vancouver Island coasts, 1998–2002. Deep-Sea Res Part I 51:945–965

    CAS  Google Scholar 

  • Salomon A, Shears N, Langlois T, Babcock R (2008) Cascading effects of fishing can alter carbon flow through a temperate coastal ecosystem. Ecol Appl 18:1874–1887

    Google Scholar 

  • Salomon AK, Gaichas SK, Shears NT, Smith JE, Madin EMP, Gaines SD (2010) Key features and context-dependence of fishery-induced trophic cascades. Cons Biol 24:382–394

    Google Scholar 

  • Sargent J, Bell M, Henderson R, Tocher D (1990) Polyunsaturated fatty acids in marine and terrestrial food webs. In: Mellinger J (ed) Animal nutrition and transport processes 1: Nutrition in wild and domestic animals, pp 11–23

  • Saupe S, Schell D, Griffiths W (1989) Carbon isotope ratio gradients in western Arctic zooplankton. Mar Biol 103:427–432

    CAS  Google Scholar 

  • Savoye N, Aminot A, Treguer P, Fontugne M, Naulet N, Kerouel R (2003) Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar Ecol Prog Ser 255:27–41

    CAS  Google Scholar 

  • Schaal G, Riera P, Leroux C (2009) Trophic significance of the kelp Laminaria digitata (Lamour.) for the associated food web: a between-sites comparison. Estuar Coast Shelf Sci 85:565–572

    Google Scholar 

  • Schaal G, Riera P, Leroux C (2010) Trophic ecology in a Northern Brittany (Batz Island, France) kelp (Laminaria digitata) forest, as investigated through stable isotopes and chemical assays. J Sea Res 63:24–35

    CAS  Google Scholar 

  • Schell D, Barnett B, Vinette K (1998) Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Mar Ecol Prog Ser 162:11–23

    CAS  Google Scholar 

  • Schlacher T, Connolly R (2009) Land-ocean coupling of carbon and nitrogen fluxes on sandy beaches. Ecosystems 12:311–321

    CAS  Google Scholar 

  • Seiderer L, Newell R (1985) Relative significance of phytoplankton, bacteria and plant detritus as carbon and nitrogen resources for the kelp bed filter-feeder Choromytilus meridionalis. Mar Ecol Prog Ser 22:127–139

    Google Scholar 

  • Seiderer L, Newell R (1988) Exploitation of phytoplankton as a food resource by the kelp bed ascidian Pyura stolonifera. Mar Ecol Prog Ser 50:107–115

    Google Scholar 

  • Simenstad CA, Duggins DO, Quay PD (1993) High turnover of inorganic carbon in kelp habitats as a cause of δ13C variability in marine food webs. Mar Biol 116:147–160

    CAS  Google Scholar 

  • Smayda T (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42:1137–1153

    Google Scholar 

  • Soares AG, Schlacher TA, McLachlan A (1997) Carbon and nitrogen exchange between sandy beach clams (Donax serra) and kelp beds in the Benguela coastal upwelling region. Mar Biol 127:657–664

    CAS  Google Scholar 

  • Steneck R, Graham M, Bourque B, Corbett D, Erlandson J, Estes J, Tegner M (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Google Scholar 

  • Stuart V, Field J, Newell R (1982) Evidence for absorption of kelp detritus by the ribbed mussel Aulacomya ater using a new Cr-51 labeled microsphere technique. Mar Ecol Prog Ser 9:263–271

    Google Scholar 

  • Takahashi K, Wada E, Sakamoto M (1992) Carbon isotope ratio and photosynthetic activity of phytoplankton in the eutrophic Mikawa Bay, Japan. Ecol Res 7:355–361

    Google Scholar 

  • Tallis H (2009) Kelp and rivers subsidize rocky intertidal communities in the Pacific Northwest (USA). Mar Ecol Prog Ser 389:85–96

    Google Scholar 

  • Thomas A, Strub P, Carr M, Weatherbee R (2004) Comparisons of chlorophyll variability between the four major global eastern boundary currents. Int J Remote Sens 25:1443–1447

    Google Scholar 

  • Thompson M, Schaffner L (2001) Population biology and secondary production of the suspension feeding polychaete Chaetopterus cf. variopedatus: Implications for benthic-pelagic coupling in lower Chesapeake Bay. Limnol Oceanogr 46:1899–1907

    Google Scholar 

  • Tortell PD, Rau GH, Morel FMM (2000) Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnol Oceanogr 45:1485–1500

    CAS  Google Scholar 

  • Tremblay J, Michel C, Hobson K, Gosselin M, Price N (2006) Bloom dynamics in early opening waters of the Arctic Ocean. Limnol Oceanogr 51:900–912

    CAS  Google Scholar 

  • van Duyl F, Moodley L, Nieuwland G, van Ijzerloo L, van Soest R, Houtekamer M, Meesters E, Middelburg J (2011) Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints. Mar Biol 158:1–14

    Google Scholar 

  • Verity P, Beatty T, Williams S (1996) Visualization and quantification of plankton and detritus using digital confocal microscopy. Aquat Microb Ecol 10:55–67

    Google Scholar 

  • Vetter E, Dayton P (1999) Organic enrichment by macrophyte detritus, and abundance patterns of megafaunal populations in submarine canyons. Mar Ecol Prog Ser 186:137–148

    Google Scholar 

  • Wildish D, Kristmanson DD (1997) Benthic suspension feeders and flow. Cambridge University Press, Cambridge

    Google Scholar 

  • Williams S, Verity P, Beatty T (1995) A new staining technique for dual identification of plankton and detritus in seawater. J Plankton Res 17:2037–2047

    Google Scholar 

Download references

Acknowledgments

This manuscript benefitted from discussions and comments by M. Brzezinski and two anonymous reviewers. This work was supported by the U. S. National Science Foundation’s Long Term Ecological Research Program under Division of Ocean Sciences grant numbers 9982105 and 0620276 and by NSF Bio-Ocean award 0962306 to HM Page.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Miller.

Additional information

Communicated by K. Bischof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, R.J., Page, H.M. Kelp as a trophic resource for marine suspension feeders: a review of isotope-based evidence. Mar Biol 159, 1391–1402 (2012). https://doi.org/10.1007/s00227-012-1929-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1929-2

Keywords

Navigation