Skip to main content
Log in

Acropora austera connectivity in the south-western Indian Ocean assessed using nuclear intron sequence data

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The hypervariable carbonic anhydrase 3/550 intron marker was sequenced in order to ascertain the levels of genetic variability and connectivity within and between reefal populations of the hard coral, Acropora austera, on the south-east African coastline. Populations were sampled from (north to south) Bazaruto and Inhaca islands (Mozambique), Rabbit Rock, Two-mile and Red Sands Reefs and Leadsman Shoal (Maputaland, South Africa). Populations at Inhaca Island contained two private alleles, part of the only monophyletic clade with fixed differences between populations in this study. Haplotype and nucleotide diversity were higher in the north of the study area. Indices of migration and haplotype sharing supported significant connectivity between populations in South Africa and Mozambique, which may be important in sustaining genetic diversity in the down-current South African A. austera populations. Measures of population subdivision indicated a significant amount of fixation of allele frequencies amongst populations. Although fine, such differentiation in a marker from the nuclear genome of a hard coral is consistent with some demographic isolation between A. austera populations in southern Mozambique and South Africa. Populations at Rabbit Rock and Inhaca Island were found to be significantly isolated from, and thus less connected to, A. austera populations at other reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evol 54:1590–1605

    CAS  Google Scholar 

  • Ayre DJ, Miller KJ (2004) Where do clonal coral larvae go? Adult genotypic diversity conflicts with reproductive effort in the brooding coral Pocillopora damicornis. Mar Ecol Progr Ser 277:95–105

    Article  Google Scholar 

  • Baums IB, Hughes CR, Hellberg MH (2005a) Mendelian microsatellite loci for the Caribbean coral Acropora palmata. Mar Ecol Progr Ser 288:115–127

    Article  CAS  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2005b) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390

    Article  CAS  Google Scholar 

  • Beerli P (1998) Estimation of migration rates and population sizes in geographically structured populations. In: Carvalho G (ed) Advances in molecular ecology. NATO-ASI workshop series. IOS Press, Amsterdam, pp 39–53

    Google Scholar 

  • Beerli P (2004) Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Mol Ecol 13:827–836

    Article  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics 22(3):341–345

    Article  CAS  Google Scholar 

  • Beerli P (2008) Migrate version 3.0 a maximum likelihood and Bayesian estimator of gene flow using the coalescent. Distributed over the internet at http://popgen.scs.edu/migrate.html

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genet 152(2):763

    CAS  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Nat Acad Sci USA 98:4563–4568

    Article  CAS  Google Scholar 

  • Benzie JAH (1999) Major genetic differences between crown-of-thorns starfish (Acanthaster planci) populations in the Indian and Pacific Oceans. Evol 53:1782–1795

    Article  CAS  Google Scholar 

  • Benzie JAH, Ballment E, Forbes AT, Demetriades NT, Sugama K, Haryanti S, Moria S (2002) Mitochondrial DNA variation in Indo-Pacific populations of the giant tiger prawn, Penaeus monodon. Mol Ecol 11:2553–2569

    Article  CAS  Google Scholar 

  • Carroll A, Harrison P, Adjeroud M (2006) Sexual reproduction of Acropora reef corals at Moorea, French Polynesia. Coral reefs 25:93–97. doi:10.1007/s00338-005-0057-6

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Fratini S, Vaninni M (2002) Genetic differentiation in the mud crab Scylla serrata (Decapoda: Portunidae) within the Indian Ocean. J Exp Mar Biol Ecol 272:103–116

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis suite. North Carolina State University, Raleigh

    Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population ize of marine organisms? In: Beaumont A (ed) Genetics and evolution of aquatic organisms. Chapman & Hall, London, pp 122–134

    Google Scholar 

  • Hellberg ME (1994) Relationships between inferred levels of geneflow and geographic distance in a philopatric coral. Balanophyllia elegans Evol 48:1829–1854

    Google Scholar 

  • Kelly RP, Eernisse DJ (2007) Southern hospitality: a latitudinal gradient in gene flow in the marine environment. Evol 55:700–706

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Lutjeharms JRE (2006) The coastal oceans of south-eastern Africa. In: Robinson AR, Brink KH (eds) The sea, vol 14. Harvard University Press, Cambridge, pp 781–832

    Google Scholar 

  • Macdonald AHH, Sampayo EM, Ridgway T, Schleyer MH (2008) Latitudinal symbiont zonation in Stylophora pistillata from southeast Africa. Mar Bio 154:209–217

    Article  Google Scholar 

  • MacKenzie JB, Munday PL, Willis BL, Miller DJ, van Oppen MJH (2004) Unexpected patterns of genetic structuring among locations but not colour morphs in Acropora nasuta (Cnidaria; Scleractinia). Mol Ecol 13:9–20

    Article  CAS  Google Scholar 

  • Maier E, Tollrian R, Rinkevich B, Nurnberger B (2005) Isolation by distance in the scleractinian coral Seriatopora hystrix from the Red Sea. Mar Biol 147:1109–1120

    Article  Google Scholar 

  • Miller KJ, Ayre DJ (2004) The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 92:557–568

    Article  CAS  Google Scholar 

  • Miller KJ, Ayre DJ (2008) Protection of genetic diversity and maintenance of connectivity among reef corals within marine protected areas. Cons Biol 22:1245–1254

    Article  Google Scholar 

  • Miller KJ, Howard CG (2004) Isolation of microsatellites from two species of scleractinian coral. Mol Ecol Notes 4:11–13

    Article  CAS  Google Scholar 

  • Munday PL, Leis JM, Lough JM, Paris CB, Kingsford MJ, Berumen ML, Lambrechts J (2009) Climate change and coral reef connectivity. Coral reefs. doi:10.1007/s00338-008-0461-9

  • Nei M (1987) Molecular evolutionary genetics. Columbia Univ Press, New York

    Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary biology centre. Uppsala University, Uppsala

    Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  Google Scholar 

  • Quartly GD, Srokosz MA (2004) Eddies in the southern Mozambique channel. Deep Sea Res II 51:69–83

    Article  CAS  Google Scholar 

  • Richards ZT, van Oppen MJH, Wallace CC, Willis BL, Miller DJ (2008) Some rare Indo-Pacific coral species are probable hybrids. PLoS ONE 3(9):e3240. doi:10.1371/journal.pone.0003240

    Article  Google Scholar 

  • Ridgway T, Gates RD (2006) Why are there so few genetic markers available for coral population analyses? Symbiosis 41:1–7

    Article  CAS  Google Scholar 

  • Ridgway T, Sampayo E (2005) Population genetic status of the western Indian Ocean: what do we know? West Indian Ocean J Mar Sci 4:1–9

    Google Scholar 

  • Ridgway T, Hoegh-Guldberg O, Ayre DJ (2001) Panmixia in Pocillopora verrucosa from South Africa. Mar Biol 139:175–181

    Article  CAS  Google Scholar 

  • Ridgway T, Riginos C, Davis J, Hoegh-Guldberg O (2008) Genetic connectivity patterns of Pocillopora verrucosa in Southern African marine protected areas. Mar Ecol Prog Ser 354:161–168

    Article  Google Scholar 

  • Riegl B (1993) Taxonomy and ecology of South African reef corals. PhD. Thesis dissertation, University of KwaZulu Natal, South Africa 494

  • Ronquist F, Huelsenbeck JP (2003) MR BAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  • Rousset F, Raymond M (1995) Testing heterozygote excess and deficiency. Genet 140:1413–1419

    CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  Google Scholar 

  • Schleyer MH (2000) South African coral communities. In: McClanahan T, Sheppard C, Obura D (eds) Coral reefs of the Indian ocean: their ecology and conservation. Oxford University Press, New York, pp 83–105

    Google Scholar 

  • Severance EG, Karl SA (2006) Contrasting population genetic structures of sympatric, mass-spawning Caribbean corals. Mar Biol 150:57–68

    Article  Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Souter P, Grahn M (2008) Spatial genetic patterns in lagoonal, reef-slope and island populations of the coral Platygyra daedalea in Kenya and Tanzania. Coral reefs 27:433–439

    Article  Google Scholar 

  • Souter P, Henriksson O, Olsson N, Grahn M (2009) Patterns of genetic structuring in the coral Pocillopora damicornis on reefs in East Africa. BMC Ecol 9:19. doi:10.1186/1472-6785-9-19

    Article  Google Scholar 

  • Steneck RS, Paris CB, Arnold SN, Ablan-Lagman MC, Alcala AC,Butler MJ, McCook LJ, Russ GR, Sale PF (2009) Thinking and managing outside the box: coalescing connectivity networks to build region-wide resilience in coral reef ecosystems. Coral reefs. doi:10.1007/s00338-009-0470-3

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. Am J Hum Gen 76:449–462

    Article  CAS  Google Scholar 

  • Stephens M, Smith N, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Gen 68:978–989

    Article  CAS  Google Scholar 

  • Swofford DL (1998) PAUP* Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genet 123:585–595

    CAS  Google Scholar 

  • Tavare S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Somemathematical questions in biology-DNAsequence analysis. Am Math Soc, Providence, RI, pp 57–86

  • Teske PR, Papadopoulos I, Newman BK, Dworschak PC, McQuaid CD, Barker NP (2008) Oceanic dispersal barriers, adaptation and larval retention: an interdisciplinary assessment of potential factors maintaining a phylogeographic break between sister lineages of an African prawn. BMC Evol Biol 8:341

    Article  Google Scholar 

  • Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2007) Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 16:771–784

    Article  CAS  Google Scholar 

  • Underwood JN, Smith LD, Van Oppen JH, Gilmour JP (2009) Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol Appl 19:18–29

    Article  Google Scholar 

  • van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883

    Article  Google Scholar 

  • van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proc R Soc Lon Ser B Biol Sci 266:179–183

    Article  Google Scholar 

  • van Oppen MJH, Willis BL, van Vugt HWJA, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363–1373

    Article  CAS  Google Scholar 

  • van Oppen MJH, McDonald BJ, Willis B, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: Reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18:1315–1329

    Google Scholar 

  • van Oppen MJH, Willis BL, van Rheede T, Miller DJ (2002) Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mol Ecol 11:1363–1376

    Article  Google Scholar 

  • van Oppen MJH, Koolmees EM, Veron JEN (2004) Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Mar Biol 144:9–18

    Article  Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian institute of marine science. UNSW Press, Sydney

    Google Scholar 

  • Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of reef coral diversity. Sci 296:2023–2025

    Article  CAS  Google Scholar 

  • Vollmer SV, Palumbi SR (2004) Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Mol Ecol 13:2763–2772

    Article  CAS  Google Scholar 

  • Vollmer SV, Palumbi SR (2007) Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J Hered 98:40–50

    Article  CAS  Google Scholar 

  • Wang S, Zhang L, Matz MV (2008) Microsatellite characterization and marker development from public EST and WGS databases in the reef-building coral Acropora millepora (Cnidaria, Anthozoa, Scleractinia). J Hered. doi:10.1093/jhered/esn100

  • Wares JP, Pringle JM (2008) Drift by drift: effective population size is limited by advection. Bmc Evol Biol 8:235

    Article  Google Scholar 

  • Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenetics Evol 26:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to two anonymous reviewers and to C. Riginos for valuable comments on this research paper. We thank SAAMBR for financial support and colleagues for ad hoc assistance and MAM Perreira for assistance in obtaining material. AM thanks L. Celliers for ad hoc assistance, T. Ridgway and the UQ CMS for providing the 3/550 CA intron primers and the opportunity to learn applicable methods through a grant from the GEF, WIOMSA and colleagues in the WIOMAGNET workgroup for helpful discussions, the NRF for a PhD grant, UKZN and colleagues at the CONSPEC lab for laboratory space and Transmap (European Commission-funded within the Sixth Framework Programme, project INCO-CT-2004-510862) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus H. H. Macdonald.

Additional information

Communicated by C. Riginos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macdonald, A.H.H., Schleyer, M.H. & Lamb, J.M. Acropora austera connectivity in the south-western Indian Ocean assessed using nuclear intron sequence data. Mar Biol 158, 613–621 (2011). https://doi.org/10.1007/s00227-010-1585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1585-3

Keywords

Navigation