Skip to main content
Log in

Effects of induced paralysis on hemocytes and tissues of the giant lions-paw scallop by paralyzing shellfish poison

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In general, bivalves are not affected by exposure to toxic dinoflagellates that produce paralyzing shellfish poisons (PSP). After injection with PSP extracted from the Gymnodinium catenatum, Nodipecten subnodosus is paralyzed, indicating that PSP provokes effects similar to what is observed in vertebrates, including paralysis and metabolic stress. To investigate the processes involved in poisoning by PSP, lions-paw scallops were injected with gonyautoxin (GTX) 2/3 epimers in the adductor muscle. Mild doses provoked adductor muscle contractions and paralysis, mantle retraction, and incapacity of shell closure, but scallops gradually recovered in a clear, dose-time recovery pattern. With high doses of GTX 2/3, scallops were permanently paralyzed, and hemocytes in hemolymph were reduced. Surprisingly, under these conditions, scallops continued normal feeding and did not show any microscopic defect in intestine or gills, but hemocytes infiltrated the adductor muscle and abnormal vitellogenesis and mantle melanization occurred. Paralysis stress was accompanied by negative scallop responses, based on visible effects, generation of nitric oxide, lipid peroxidation, and changes in antioxidant and hydrolytic enzymes in hemocytes and tissues. These data can be used to understand potential side effects of PSP in bivalves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson DM, Sullivan JJ, Reguera B (1989) Paralytic shellfish poisoning in northwest Spain: the toxicity of the dinoflagellate Gymnodinium catenatum. Toxicon 27:665–674

    Article  CAS  PubMed  Google Scholar 

  • Andrinolo D, Santinelli N, Otaño S, Sastre V, Lagos N (1999) Paralytic shellfish toxins in mussels and Alexandrium tamarense at Valdes Peninsula, Chubut, Patagonia Argentina: Kinetic of natural depuration. J Shellfish Res 18:203–209

    Google Scholar 

  • AOAC (1984) Official methods of analysis. In: Horowitz W (ed) Association of official analytical chemists, 14th edn, Gaithersburg

  • Baden D, Trainer VL (1993) Mode of action of toxins of seafood poisoning. In: Falconer IR (ed) Algal toxins in seafood and drinking Water. Academic Press, London, pp 49–74

    Google Scholar 

  • Bainton DF (1981) The discovery of lysosomes. J Cell Biol 91:66s–76s

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    CAS  PubMed  Google Scholar 

  • Beitler MK, Liston J (1990) Uptake and tissue distribution of PSP toxin in butter clams. In: Graneli E, Sundstrom B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier Science, New York, pp 257–263

    Google Scholar 

  • Beyer WE Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Blackburn SI, Hallegraeff GM, Bolch CJS (1989) Vegetative reproduction and sexual life cycle of the toxic dinoflagellate Gymnodinium catenatum from Tasmania. Australia J Phycol 25:577–590

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:24–254

    Article  Google Scholar 

  • Bricelj VM, Shumway S (1998) Paralytic shellfish toxins in bivalve mollusks: occurrence, transfer kinetics, and biotransformation. Revi Fish Sci 6:315–383

    Article  CAS  Google Scholar 

  • Bricelj VM, Lee JH, Cembell AD, Anderson DM (1990) Uptake of Alexandrium fundyense by Mytilus edulis and Mercenaria mercenaria under controlled conditions. In: Graneli E, Sundstrom B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier Science, New York, pp 269–275

    Google Scholar 

  • Bricelj VM, Twarog BM, MacQuarrie SP, Chang P, Trainer VL (2000) Does the history of toxin exposure influence bivalve population responses to PSP toxins in Mya arenaria? 1) burrowing and nerve responses. J Shellfish Res 19(1):635

    Google Scholar 

  • Bricelj VM, Connell L, Konoki K, MacQuarrie SP, Scheuer T, Catterall WA, Trainer VL (2005) Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 434:763–767

    Article  CAS  PubMed  Google Scholar 

  • Byczkowski JZ, Gessner T (1988) Biological role of superoxide ion-radical. Int J Biochem 20:569–580

    Article  CAS  PubMed  Google Scholar 

  • Cembella AD, Quilliam MA, Lewis NI, Bauder AG, Dell’Aversano C, Thomas K, Jellett J, Cusack RR (2002) The toxigenic marine dinoflagellate Alexandrium tamarense as the probable cause of mortality of caged salmon in Nova Scotia. Harmful Algae 1:313–3252

    Article  CAS  Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) Handbook of methods of oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  • Dupuy JL, Sparks AK (1967) Gonyaulax washingtonensis, its relationship to Mytilus californianus and Crassostrea gigas as a source of paralytic shellfish toxin in Sequim Bay, Washington. Proc Natl Shellfisheries Assoc 58:2

    Google Scholar 

  • Estrada NA, Lagos N, García C, Maeda-Martínez AN, Ascencio F (2007a) Effects of the toxic dinoflagellate Gymnodinium catenatum on uptake and fate of paralytic shellfish poisons in the Pacific giant lions-paw scallop Nodipecten subnodosus. Mar Biol 151:1205–1214

    Article  CAS  Google Scholar 

  • Estrada N, Romero MJ, Campa-Córdova A, Luna A, Ascencio F (2007b) Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus. Comp Biochem Physiol Part C 146:502–510

    Google Scholar 

  • Forslund T, Sundqvist T (1997) Nitric oxide-releasing particles inhibit phagocytosis in human neutrophils. Biochem Biophys Res Com 233:492–495

    Article  CAS  PubMed  Google Scholar 

  • Gainey LF, Shumway SE (1988a) A compendium of the responses of bivalve mollusks to toxic dinoflagellates. J Shellfish Res 7:623–628

    Google Scholar 

  • Gainey LF, Shumway SE (1988b) Physiological effects of Protogonyaulax tamarensis on cardiac activity in bivalve molluscs. Comp Biochem Physiol 91:159–164

    Google Scholar 

  • Galimany E, Sunila I, Hegaret H, Ramón M, Wikfors GH (2008) Experimental exposure of the blue mussel (Mytilus edulis, L.) to the toxic dinoflagellate Alexandrium fundyense: histopathology, immune responses, and recovery. Harmful Algae 7:702–711

    Article  CAS  Google Scholar 

  • Gessner BD, Middaugh JP (1995) Paralytic shellfish poisoning in Alaska: a 20-year retrospective analysis. Am J Epidemiol 141:766–770

    CAS  PubMed  Google Scholar 

  • Hall S, Strichartz GR, Moczydlowski E, Ravindran A, Reichardt PB (1990) The saxitoxins: sources, chemistry, and pharmacology. In: Hall S, Strichartz GR (eds) Marine toxins. ACS Symposium Series 418, Washington DC, pp 29–65

  • Hallegraeff GM (1997) Algal toxins in Australian shellfish. In: Hocking AD, Arnold G, Jenson I, Newton K, Sutherland P (eds) Foodborne microorganisms of public health significance. Australian Institute of Food Science and Technology (NSW Branch), Food Microbiology Group, NSW, pp 559–571

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501–514

    Article  CAS  PubMed  Google Scholar 

  • Harada T, Oshima Y, Kamiya H, Yasumoto T (1982) Confirmation of paralytic shellfish toxins in the dinoflagellate Pyrodinium bahamense var. compressa and bivalves in Palau. Nippon Suis Gakk 48:821–825

    CAS  Google Scholar 

  • Hegaret H, Wikforks GH, Soudant P, Lambert C, Shumway SE, Berard JB, Lassus P (2007) Toxic dinoflagellates (Alexandrium fundyense and A. catenella) have minimal apparent effects on oyster hemocytes. Mar Biol 152:441–447

    Article  CAS  Google Scholar 

  • Hermes-Lima M, Story JM, Storey KB (1998) Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp Biochem Physiol Part B 120:437–448

    Article  CAS  Google Scholar 

  • Holt OJ, Gallo F, Griffiths GM (2006) Regulating secretory lysosomes. J Biochem 140:7–12

    Article  CAS  PubMed  Google Scholar 

  • Hwang DF, Chueh CH, Jeng SS (1990) Susceptibility of fish, crustacean and mollusk to tetrodotoxin and paralytic shellfish poison. Nippon Suis Gak 56:337–343

    CAS  Google Scholar 

  • Imoto T, Johnson LN, North ACT, Phillips DC, Rupley JA (1972) Vertebrate lysozyme. In: Boyer PD (ed) The enzymes. Academic Press, New York, pp 665–836

    Google Scholar 

  • Kao CY (1966) Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmac Rev 18:997–1049

    CAS  Google Scholar 

  • Kao CY (1986) Tetrodotoxin, saxitoxin and the molecular biology of the sodium channel. Ann NY Acad Sci 479:52–65

    Article  CAS  PubMed  Google Scholar 

  • Kao CY (1993) Paralytic shellfish poisoning. In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic Press, London, pp 75–86

    Google Scholar 

  • Kvitek RG, Beitler MK (1991) Relative insensitivity of butter clam neurons to saxitoxin: a pre-adaptation for sequestering paralytic shellfish poisoning toxins as a chemical defense. Mar Ecol Prog Ser 69:47–54

    Article  Google Scholar 

  • Lacoste A, Cueff A, Poulet SA (2002) P35-sensitive caspases, MAP kinases and Rho modulate b-adrenergic induction of apoptosis in mollusk immune cells. J Cell Sci 115:761–768

    CAS  PubMed  Google Scholar 

  • Lagos N (2003) Paralytic shellfish poisoning phycotoxins: occurrence in South America. Comments Toxicol 9:175–193

    Article  CAS  Google Scholar 

  • Livingstone DR, Pipe RK (1992) Mussels and environmental contaminants, molecular and cellular aspects. In: Gosling E (ed) The mussel Mytilus: ecology, physiology, genetic and culture. Elsevier, Amsterdam, pp 425–464

    Google Scholar 

  • Lodeiros CJ, Rengel JJ, Freites L, Morales F, Himmelman JH (1998) Growth and survival of Lyropecten (Nodipecten) nodosus maintained in suspended culture at three depths. Aquaculture 165:41–50

    Article  Google Scholar 

  • Lu YH, Hwang DF (2002) Effects of toxic dinoflagellates and toxin biotransformation in bivalves. J Nat Toxins 11:315–322

    CAS  PubMed  Google Scholar 

  • Manduzio H, Rocher B, Durand F, Galap C, Leboulenger F (2005) The point about oxidative stress in molluscs. Invertebrate Survival Journal 2:91–104

    Google Scholar 

  • Matsuyama Y, Miyamoto M, Kotani Y (1999) Grazing impacts of the heterotrophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum. Aquat Microb Ecol 17:91–98

    Article  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocupreine). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Mons MN, Van Egmond HP, Speijers GJA (1998) Paralytic shellfish poisoning: a review. RIVM Report 388802-005, 47 pp

  • Muneoka Y, Twarog BM (1983) Neuromuscular transmission and excitation-contraction coupling in molluscan muscle. In: Saleuddin ASM, Wilbur KM (eds) The mollusca, vol 4. Academic Press, New York, pp 35–76

    Google Scholar 

  • Negri AP, Stirling D, Blackburn S, Bolch C, Burton I, Eaglesham G, Thomas K, Walter J, Willis R, Quilliam M (2003) Three new saxitoxin analogues isolated from the toxic dinoflagellate Gymnodinium catenatum. In: Villalba A, Reguera B, Romalde JL, Beiras R (eds) Molluscan shellfish safety. Conselleria de Pesca e Asuntos Marítimos a Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Santiago de Compostela, pp 19–28

    Google Scholar 

  • Oshima Y (1995) Post column derivatization liquid chromatographic method for paralytic shellfish toxins. J AOAC Interntl 78:528–532

    CAS  Google Scholar 

  • Oshima Y, Hasegawa M, Yasumoto T, Hallegraeff G, Blackburn S (1987) Dinoflagellate Gymnodinium catenatum as the source of paralytic shellfish toxins in Tasmanian shellfish. Toxicon 25:1105–1111

    Article  CAS  Google Scholar 

  • Oshima T, Sugino K, Itakura H, Hirota M, Yasumoto T (1990) Comparative studies on paralytic shellfish toxin profile of dinoflagellates and bivalves. In: Graneli E, Sundstrom B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 479–485

    Google Scholar 

  • Persky AM, Greeen PS, Stubley L, Howell CO, Zaulayanov L, Brazeau GA, Simpkins JW (2000) Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Soc Exp Biol Med 223:59–66

    Article  CAS  Google Scholar 

  • Price RJ, Lee JS (1971) Interaction between paralytic shellfish poison and melanin obtained from butter clam (Saxidomus giganteus) and synthetic melanin. J Fish Res Bd Can 28:1789–1792

    CAS  Google Scholar 

  • Price RJ, Lee JS (1972) Paralytic shellfish poison and melanin distnbution in fractions of toxic butter clam (Saxidomus giganteus) siphon. J Fish Res Bd Can 29:1657–1658

    CAS  Google Scholar 

  • Quilliam MA, Dell’Aversano C, Hess P (2001) Analysis of PSP toxins by liquid chromatography-mass spectrometry. In: Book of abstracts second international conference on harmful algae management and mitigation, 83. 12–16 November 2001, Qingdao

  • Ritchie JM, Rogart RB (1977) The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev Physiol Biochem Pharmacol 79:1–50

    Article  CAS  PubMed  Google Scholar 

  • Roch P (1999) Defense mechanism and disease prevention in farmed marine invertebrates. Aquaculture 172:125–145

    Article  Google Scholar 

  • Rubbo H, Radi R, Anselmi D, Kirk M, Barnes S, Butler J, Eiserich JP, Freeman BA (2000) Nitric oxide reaction with lipid peroxyl radicals spares alpha-tocopherol during lipid peroxidation. Greater oxidant protection from the pair nitric oxide/alpha-tocopherol than alpha-tocopherol/ascorbate. J Biological Chem 275:10812–10818

    Article  CAS  Google Scholar 

  • Sauve S, Brousseau P, Pellerin J, Morin Y, Senecal L, Goudreau P, Fournier M (2002) Phagocytic activity of marine and freshwater bivalves, in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn). Aquat Toxicol 58:189–200

    Article  CAS  PubMed  Google Scholar 

  • Schantz EJ (1986) Chemistry and biology of saxitoxin and related toxins. Ann NY Acad Sci 479:15–23

    Article  CAS  PubMed  Google Scholar 

  • Schantz EJ, Ghazarossian VE, Schones HK, Strong FM (1975) The structure of saxitoxin. J Am Chem Soc 97:1238–1239

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Yoshioka M (1981) Transformation of paralytic shellfish as demonstrated in scallop homogenates. Science 212:547–549

    Article  CAS  PubMed  Google Scholar 

  • Shumway SE (1995) Phycotoxin-related shellfish poisoning: bivalve mollusks are not the only vectors. Rev Fish Sci Jpn 3:1–31

    Article  Google Scholar 

  • Shumway SE, Cucci T (1987) The effects of the toxic dinoflagellate, Protogonyaulax tamarensis, on the feeding and behavior of bivalve molluscs. Aquat Toxicol 10:9–27

    Article  Google Scholar 

  • Shumway SE, Cucci TL, Gainey L, Yentsch CM (1985) A preliminary study of the effects of Gonyaulax tamarensis on feeding in bivalve molluscs. In: Anderson DM, White AW, Baden DG (eds) Toxic phytoplankton blooms in the sea. Proceedings of the third international conference. Elsevier, New York, pp 389–394

    Google Scholar 

  • Strichartz G, Castle N (1990) Pharmacology of marine toxins. Effects on membrane channels. In: Strichartz G (ed) Marine toxins origin, structure and molecular pharmacology. American Chemical Society, Washington, DC, pp 2–20

    Chapter  Google Scholar 

  • Tafalla C, Gómez-León B, Novoa B, Figueras A (2003) Nitric Oxide production by carpet shell clam (Ruditapes decussatus) hemocytes. Develop Compar Immunol 27:197–205

    Article  CAS  Google Scholar 

  • Twarog B, Muneoka Y (1973) Calcium and the control of contraction and relaxation in a molluscan smooth muscle. Cold Spring Harbor Symp Quant Biol 37:489

    CAS  Google Scholar 

  • Twarog BM, Yamaguchi H (1975) Resistance to paralytic shellfish toxins in bivalve molluscs. In: LoCicero VR (ed) Proceedings of the first international conference on toxic dinoflagellate Blooms. Wakefield, MA-USA MSTF, p 532

    Google Scholar 

  • Twarog BM, Hidaka T, Yamaguchi H (1972) Resistance to tetrodotoxin and saxitoxin in nerves of bivalve mollusc. A possible correlation with paralytic shellfish poisoning. Toxicon 10:273–278

    Article  CAS  PubMed  Google Scholar 

  • Vandewalle PL, Petersen NO (1987) Oxidation of reduced cytochrome c by hydrogen peroxide. Implications for superoxide assays. Fed Curr Biochem Soc FEBS Lett 210:195–198

    CAS  Google Scholar 

  • Winston GW, Livingstone DR, Lips F (1990) Oxygen reduction metabolism by the digestive gland of the common marine mussel Mytilus edulis. J Exp Zool 255:296–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by Centro de Investigaciones Biológicas del Noroeste (CIBNOR grant AC 4.1) and a Consejo Nacional de Ciencia y Tecnología of Mexico (CONACYT) fellowship 172583 to N.A.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Ascencio.

Additional information

Communicated by H. O. Portner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada, N., Rodríguez-Jaramillo, C., Contreras, G. et al. Effects of induced paralysis on hemocytes and tissues of the giant lions-paw scallop by paralyzing shellfish poison. Mar Biol 157, 1401–1415 (2010). https://doi.org/10.1007/s00227-010-1418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1418-4

Keywords

Navigation