Skip to main content

Advertisement

Log in

Is the burrowing performance of a sandy beach surfing gastropod limiting for its macroscale distribution?

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The size-specific burrowing capacity of Olivella semistriata, an extremely abundant surfing gastropod of exposed sandy beaches in the tropical East Pacific, was investigated in terms of sediment grain size. For all investigated sand classes, there was a significant increase in burial time with size. Burrowing was fastest in sand with grain size between 150 and 355 μm, as well as in native sediment (median grain size 209 μm) and in field conditions (median grain size 223 μm). Values of the burrowing rate index (BRI) were found to be between 3 and 7, rating the burrowing capacity of O. semistriata to be fast to very fast. Data from previous qualitative and quantitative sampling campaigns were used to identify the macroscale (i.e., between beaches) distribution of O. semistriata in terms of sediment grain size and swash conditions. Swash period was shorter than burial time, excluding this as a factor limiting the distribution. Swash standstill time (the time between uprush and backwash), however, was just long enough on the beaches, where O. semistriata was present to allow for securing firm anchorage. On reflective beaches, the swash standstill time is as short as 1 or 2 s, denying O. semistriata the time to burry itself before being swept away by the backwash. As such, swash standstill time is advocated as a valuable part of the swash exclusion hypothesis. A survey of the available literature on the burrowing of surfers shows that mole crabs are by far the fastest burrowers and the only surfers that burrow sufficiently fast to withstand the extremely short swash standstill time on reflective beaches. Burrowing ability of surfing gastropods is found in the same range as surfing bivalves, both being insufficient to cope with coarse sediment on steep beaches. Finally, we suggest that neither burial time nor BRI, yet rather the minimal burial time—the time needed to anchor securely in a certain sand at a given swash velocity—should be used to judge the limitations of burial in terms of sediment and swash conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The swash standstill time was only measured on a number of beaches in a similar context, albeit with different morphodynamics. It has to be seen whether this parameter can easily be identified in different situations or not. Also note that at maximum run-up, especially on beaches with saturated fine sands, there can be a gentle alongshore current. If, in this situation, there was no cross-shore movement of the water’s edge, this still counted as swash standstill, hence the definition ‘no visible cross-shore movement of the trailing edge’.

References

  • Aerts K, Vanagt T, Fockedey N et al (2004) Macrofaunal community structure and zonation of an Ecuadorian sandy beach (bay of Valdivia). Belg J Zool 134(1):17–24

    Google Scholar 

  • Alexander R, Stanton R, Dodd J (1993) Influence of sediment grain size on the burrowing of bivalves: correlation with distribution and stratigraphic persistence of selected neogene clams. Palaios 8:289–303

    Article  Google Scholar 

  • Brown A, McLachlan A (1990) Ecology of Sandy Shores. Elsevier, Amsterdam

    Google Scholar 

  • Brown A, Trueman E (1994) The burrowing rate index. J Molluscan Stud 60:354–355

    Article  Google Scholar 

  • Brown A, Stenton-Dozey J, Trueman E (1989) Sandy-beach Bivalves and Gastropods: a comparison between Donax serra and Bullia digitalis. Adv Mar Biol 25:179–247

    Article  Google Scholar 

  • Buchanan J (1984) Sediment analysis. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell Scientific Publications, Oxford, pp 41–65

    Google Scholar 

  • Caine E (1975) Feeding and masticatory structures of selected Anomura. J Exp Mar Biol Ecol 18:277–301. doi:10.1016/0022-0981(75)90112-4

    Article  Google Scholar 

  • Cubit J (1969) The behaviour and physical factors causing migration and aggregation in the sand crab Emerita analoga (Stimpson). Ecology 50:118–123. doi:10.2307/1934669

    Article  Google Scholar 

  • Defeo O (1996) Experimental management of an exploited sandy beach bivalve population. Rev Chil Hist Nat 69:605–614

    Google Scholar 

  • Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar Ecol Prog Ser 295:1–20. doi:10.3354/meps295001

    Article  Google Scholar 

  • de la Huz R, Lastra M, Lopez J (2002) The influence of sediment grain size on burrowing, growth and metabolism of Donax trunculus L. (Bivalvia: Donacidae). J Sea Res 47:85–95

    Article  CAS  Google Scholar 

  • Dudley E, Vermeij G (1989) Shell form and burrowing performance in gastropods from Pacific Panama, with comments on regional differences in functional specialization. Veliger 32(3):284–287

    Google Scholar 

  • Dugan J, Hubbard D, Lastra M (2000) Burrowing abilities and swash behavior of three crabs, Emerita analoga Stimpson, Blepharipoda occidentalis Randall, and Lepidopa californica Efford (Anomura, Hippidae), of exposed sandy beaches. J Exp Mar Biol Ecol 255:229–245. doi:10.1016/S0022-0981(00)00294-X

    Article  CAS  Google Scholar 

  • Ellers O (1995a) Behavioral control of swash-riding in the clam Donax variabilis. Biol Bull 189:120–127. doi:10.2307/1542462

    Article  CAS  Google Scholar 

  • Ellers O (1995b) Discrimination among wave-generated sound by a swash-riding clam. Biol Bull 189:128–137. doi:10.2307/1542463

    Article  CAS  Google Scholar 

  • Ellers O (1995c) Form and motion of Donax variabilis in flow. Biol Bull 189:138–147. doi:10.2307/1542464

    Article  CAS  Google Scholar 

  • Lastra M, Dugan J, Hubbard D (2002) Burrowing and swash behavior of the pacific mole crab Hippa pacifica (Anomura, Hippidae) in tropical sandy beaches. J Crustac Biol 22(1):53–58. doi:10.1651/0278-0372(2002)022[0053:BASBOT]2.0.CO;2

    Article  Google Scholar 

  • Lastra M, Jaramillo E, Lopez J, Contreras H, Duarte C, Rodriguez G (2004) Population abundances, tidal movement, burrowing ability and oxygen uptake of Emerita analoga (Stimpson) (Crustacea, Anomura) on a sandy beach of South-central Chile. Mar Ecol 25(1):71–89

    Article  Google Scholar 

  • McArdle S, McLachlan A (1991) Dynamics of the swash zone and effluent line on sandy beaches. Mar Ecol Prog Ser 76:91–99

    Article  Google Scholar 

  • McArdle S, McLachlan S (1992) Sandy beach ecology: swash features relevant to the macrofauna. J Coast Res 8:398–407

    Google Scholar 

  • McLachlan A (1990) Dissipative beaches and macrofauna communities on exposed intertidal sands. J Coast Res 6:57–71

    Google Scholar 

  • McLachlan A, Young N (1982) Effects of low temperature on burrowing rates of four sandy beach molluscs. J Exp Mar Biol Ecol 65:275–284

    Article  Google Scholar 

  • McLachlan A, Dorvlo A (2005) Global patterns in sandy beach macrobenthic communities. J Coast Res 21(4):674–687. doi:10.2112/03-0114.1

    Article  Google Scholar 

  • McLachlan A, Brown A (2006) The ecology of sandy shores, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • McLachlan A, Jaramillo E, Donn T, Wessels F (1993) Sandy beach macrofauna communities and their control by the physical environment: a geographical comparison. J Coast Res 81(15):27–38

    Google Scholar 

  • McLachlan A, Jaramillo E, Defeo O, Dugan J, de Ruyck A, Coetzee P (1995) Adaptations of bivalves to different beach types. J Exp Mar Biol Ecol 187:147–160. doi:10.1016/0022-0981(94)00176-E

    Article  Google Scholar 

  • Nel R, McLachlan A, Winter D (2001) The effect of grain size on the burrowing of two Donax species. J Exp Mar Biol Ecol 265:219–238. doi:10.1016/S0022-0981(01)00335-5

    Article  Google Scholar 

  • Olsson A (1956) Studies on the genus Olivella. Proc Acad Nat Sci Philadelphia 108:155–225

    Google Scholar 

  • Short A (1999) Handbook of beach and shoreface morphodynamics. Wiley, Chichester 373 pp

    Google Scholar 

  • Stanley S (1970) Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of American Mem 125, Baltimore, Maryland

    Book  Google Scholar 

  • Trueman E (1971) The control of burrowing and the migratory behaviour of Donax denticulatus (Bivalvia: Tellinacea). J Zool 165:453–467

    Article  Google Scholar 

  • Trueman E, Brown A (1989) The effect of shell shape on the burrowing performance of species of Bullia (Gastropoda: Nassariidae). J Molluscan Stud 55:129–131

    Article  Google Scholar 

  • Vanagt T (2007) The role of swash in the ecology of Ecuadorian sandy beach macrofauna, with special reference to the surfing gastropod Olivella semistriata. PhD Thesis, Ghent University, Belgium

  • Vanagt T, Vincx M, Degraer S (2008) Can sandy beach molluscs show an endogenously controlled circatidal migrating behaviour? Hints from a swash rig experiment. Mar Ecol 29(Suppl 1):118–125

    Article  Google Scholar 

  • Vermeij G, Zipser E (1986) Burrowing performance of some tropical pacific gastropods. Veliger 29(2):200–206

    Google Scholar 

  • Warman D, Reid D, Naylor E (1993) Circatidal variability in the behavioural responses of a sandbeach isopod Eurydice pulchra (Leach) to orientational cues. J Exp Mar Biol Ecol 168:59–70

    Article  Google Scholar 

  • Yannicelli B, Palacios R, Gimenez L (2002) Swimming ability and burrowing time of two cirolanid isopods from different levels of exposed sandy beaches. J Exp Mar Biol Ecol 273:73–88

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank three anonymous reviewers for their useful suggestions and comments. The first author and the field campaign were financially supported by a research assistant grant from the Fund for Scientific Research Flanders (Belgium). Additional financial support for the field work was provided by the Leopold III fund. We thank Ann Merckx, Lien Steenhuyse, Danielle Schram and Galo Chancay for their help with the data collection and help in the lab. The Escuela Superior Politecnica del Litoral ESPOL, Guayaquil (Ecuador) and the Centro Nacional de Acuicultura e Investigaciones Marinas CENAIM, San Pedro (Ecuador) are acknowledged for their logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vanagt.

Additional information

Communicated by A. McLachlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanagt, T., Vincx, M. & Degraer, S. Is the burrowing performance of a sandy beach surfing gastropod limiting for its macroscale distribution?. Mar Biol 155, 387–397 (2008). https://doi.org/10.1007/s00227-008-1035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-1035-7

Keywords

Navigation