Skip to main content
Log in

A review of preparation of binderless fiberboards and its self-bonding mechanism

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The demand for fiberboards has been growing in recent years. However, emission of formaldehyde, which was the main component of adhesives in fiberboards, has caused environmental and health concerns. Industries are therefore pursuing green chemistry technologies to eliminate these concerns. Binderless fiberboards appeared to be such candidates since the manufacturing process involved no resin addition. Several potential mechanisms of the formation of binderless fiberboards have been proposed. Chemical changes of components in lignocellulosic materials were expected to occur, and self-bonding achieved during hot pressing provided main bonding strength. This review summarized various aspects of binderless fiberboard production, particularly feasibility of different raw materials, chemical and enzymatic pretreatments of raw materials, manufacturing process, as well as the potential mechanism of self-bonding. Furthermore, further work that may benefit the elucidation of self-bonding mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez C, Rojas OJ, Rojano B, Ganan P (2015) Development of self-bonded fiberboards from fiber of leaf plantain: effect of water and organic extractives removal. BioResource 10(1):672–683

    CAS  Google Scholar 

  • Álvarez C, Rojano B, Almaza O, Rojas OJ, Gañán P (2011) Self-bonding boards from plantain fiber bundles after enzymatic treatment: adhesion improvement of lignocellulosic products by enzymatic pre-treatment. J Polym Environ 19(1):182–188

    Article  Google Scholar 

  • Angles MN, Reguant J, Montane D, Ferrando F, Farriol X, Salvado J (1999) Binderless composites from pretreated residual softwood. J Appl Polym Sci 73(12):2485–2491

    Article  CAS  Google Scholar 

  • Anglès M, Ferrando F, Farriol X, Salvadó J (2001) Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass Bioenergy 21(3):211–224

    Article  Google Scholar 

  • Baskaran M, Hashim R, Said N, Raffi SM, Balakrishnan K, Sudesh K, Sulaiman O, Arai T, Kosugi A, Mori Y (2012) Properties of binderless particleboard from oil palm trunk with addition of polyhydroxyalkanoates. Compos Part B-Eng 43(3):1109–1116

    Article  CAS  Google Scholar 

  • Boon JG, Hashim R, Sulaiman O, Hiziroglu S, Sugimoto T, Sato M (2013) Influence of processing parameters on some properties of oil palm trunk binderless particleboard. Holz Roh Werkst 71(5):583–589

    Article  CAS  Google Scholar 

  • Boonstra MJ (2008) A two-stage thermal modification of wood. Dissertation, Ghent University

  • Bouajila J, Limare A, Joly C, Dole P (2005) Lignin plasticization to improve binderless fiberboard mechanical properties. Polym Eng Sci 45(6):809–816

    Article  CAS  Google Scholar 

  • Chow S (1972) Thermal reactions and industrial uses of bark. Wood Fiber Sci 4(3):130–138

    CAS  Google Scholar 

  • Chow S (1975) Bark boards without synthetic resins. For Prod J 25(11):32–37

    Google Scholar 

  • Cristescu C, Karlsson O (2013) Changes in content of furfurals and phenols in self-bonded laminated boards. BioResources 8(3):4056–4071

    Article  Google Scholar 

  • Euring M, Rühl M, Ritter N, Kües U, Kharazipour A (2011a) Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: physicochemical analysis of the reaction mechanism. Biotechnol J 6(10):1253–1261

    Article  CAS  PubMed  Google Scholar 

  • Euring M, Trojanowski J, Horstmann M, Kharazipour A (2011b) Studies of enzymatic oxidation of TMP-fibers and lignin model compounds by a laccase-mediator-system using different 14C and 13C techniques. Wood Sci Technol 46(4):699–708

    Article  Google Scholar 

  • Euring M, Trojanowski J, Kharazipour A (2013) Laccase-mediator catalyzed modification of wood fibers: studies on the reaction mechanism and making of medium-density fiberboard. For Prod J 63(1–2):54–60

    CAS  Google Scholar 

  • Fahmy TA, Mobarak F (2013) Advanced binderless board-like green nanocomposites from undebarked cotton stalks and mechanism of self-bonding. Cellulose 20(3):1453–1457

    Article  CAS  Google Scholar 

  • Felby C, Nielsen BR, Olesen PO, Skibsted LH (1997a) Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibers from beech (Fagus sylvatica). Appl Microbiol Biot 48(4):459–464

    Article  CAS  Google Scholar 

  • Felby C, Pedersen LS, Nielsen BR (1997b) Enhanced auto adhesion of wood fibers using phenol oxidases. Holzforschung 51(3):281–286

    Article  CAS  Google Scholar 

  • Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Microb Tech 31(6):736–741

    Article  CAS  Google Scholar 

  • Felby C, Thygesen LG, Sanadi A, Barsberg S (2004) Native lignin for bonding of fiber boards—evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind Crop Prod 20(2):181–189

    Article  CAS  Google Scholar 

  • Gao Z, Wang XM, Wan H, Brunette G (2011) Binderless panels made with black spruce bark. BioResources 6(4):3960–3972

    CAS  Google Scholar 

  • Geimer RL, Price EW (1987) Steam injection pressing: large panel fabrication with southern hardwoods. In: Proceedings of the 20th international particleboard/composite materials symposium; 1986 April 8–10. Washington State University, Pullman, 1986, pp 367–384

  • Geng X, Zhang S, Deng J (2006) Alkaline treatment of black spruce bark for the manufacture of binderless fiberboard. J Wood Chem Technol 26(4):313–324

    Article  CAS  Google Scholar 

  • Gupta G, Ning Y, Feng MW (2011) Effects of pressing temperature and particle size on bark board properties made from beetle-infested lodgepole pine (pinus contorta) barks. Forest Prod J 61(6):478–488

    Article  Google Scholar 

  • Halvarsson S, Edlund H, Norgren M (2009) Manufacture of non-resin wheat straw fibreboards. Ind Crop Prod 29(2):437–445

    Article  CAS  Google Scholar 

  • Hashim R, Saari N, Sulaiman O, Sugimoto T, Hiziroglu S, Sato M, Tanaka R (2010) Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk. Mater Design 31(9):4251–4257

    Article  CAS  Google Scholar 

  • Hidayat H, Keijsers E, Prijanto U, van Dam J, Heeres H (2014) Preparation and properties of binderless boards from Jatropha curcas L. seed cake. Ind Crop Prod 52:245–254

    Article  CAS  Google Scholar 

  • Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, Chichester

    Book  Google Scholar 

  • Hüttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biot 55(4):387–394

    Article  Google Scholar 

  • Imam SH, Gordon SH, Mao L, Chen L (2001) Environmentally friendly wood adhesive from a renewable plant polymer: characteristics and optimization. Polym Degrad Stabil 73(3):529–533

    Article  CAS  Google Scholar 

  • Inoue M, Norimoto M, Tanahashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci 25(3):224–235

    CAS  Google Scholar 

  • Ito Y, Tanahashi M, Shigematsu M, Shinoda Y (1998) Compressive-molding of wood by high-pressure steam-treatment: part 1. Development of compressively molded squares from thinnings. Holzforschung 52(2):211–216

    Article  CAS  Google Scholar 

  • Kharazipour A, Euring M (2010) Use of mediators in the production of fibreboards. WO 2010020409 A3

  • Kharazipour A, Euring M (2013) Method for producing wood materials and/or composite materials. WO 2013127947 A1

  • Kharazipour A, Hüttermann A, Lüdemann H (1997) Enzymatic activation of wood fibres as a means for the production of wood composites. J Adhes Sci Technol 11(3):419–427

    Article  Google Scholar 

  • Kharazipour A, Bergmann K, Nonninger K, Hüttermann A (1998) Properties of fibre boards obtained by activation of the middle lamella lignin of wood fibres with peroxidase and H2O2 before conventional pressing. J Adhes Sci Technol 12(10):1045–1053

    Article  CAS  Google Scholar 

  • Kudanga T, Prasetyo EN, Sipila J, Nousiainen P, Widsten P, Kandelbauer A, Nyanhongo GS, Guebitz GM (2008) Laccase-mediated wood surface functionalization. Eng Life Sci 8(3):297–302

    Article  CAS  Google Scholar 

  • Kudanga T, Nyanhongo GS, Guebitz GM, Burton S (2011) Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb Tech 48(3):195–208

    Article  CAS  Google Scholar 

  • Kües U, Bohn C, Euring M, Müller C, Polle A, Kharazipour A (2007) Enzymatically modified wood in panel board production. In book: wood production, wood technology, and biotechnological impacts. Universitätsverlag Göttingen, pp 433–468

  • Kumar R, Choudhary V, Mishra S, Varma I, Mattiason B (2002) Adhesives and plastics based on soy protein products. Ind Crop Prod 16(3):155–172

    Article  CAS  Google Scholar 

  • Kwon JH, Geimer RL (1998) Impact of steam pressing variables on the dimensional stabilization of flakeboard. For Prod J 48(4):55–61

    Google Scholar 

  • Laemsak N, Okuma M (2000) Development of boards made from oil palm frond II: properties of binderless boards from steam-exploded fibers of oil palm frond. J Wood Sci 46(4):322–326

    Article  Google Scholar 

  • Lamaming J, Sulaiman O, Sugimoto T, Hashim R, Said N, Sato M (2013) Influence of chemical components of oil palm on properties of binderless particleboard. BioResources 8(3):3358–3371

    Article  Google Scholar 

  • Lawther M, Sun RC, Banks WB (1996) Effect of steam treatment on the chemical composition of wheat straw. Holzforschung 50(4):365–371

    Article  CAS  Google Scholar 

  • Lee CM, Hunt JF (2013) Binderless panel made from wood particles and cellulosic fibers, US Patents 594,921

  • Luo H, Yue L, Wang NW, Zhang HY, Lu XN (2014) Manufacture of binderless fiberboard made from bamboo processing residues by steam explosion pretreatment. Wood Res 59(5):861–870

    Google Scholar 

  • Mai C, Kües U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biot 63(5):477–494

    Article  CAS  Google Scholar 

  • Mancera C, Ferrando F, Salvado J (2008) Cynara cardunculus as raw material for the production of binderless fiberboards: optimization of pretreatment and pressing conditions. J Wood Chem Technol 28(3):207–226

    Article  CAS  Google Scholar 

  • Mancera C, Mansouri NEE, Ferrando F, Salvado J (2011) The suitability of steam exploded Vitis vinifera and alkaline lignin for the manufacture of fiberboard. BioResources 6(4):4439–4453

    CAS  Google Scholar 

  • Mansouri NEE, Pizzi A, Salvado J (2007) Lignin-based polycondensation resins for wood adhesives. J Appl Polym Sci 103(3):1690–1699

    Article  Google Scholar 

  • Matuana L, Balatinecz J, Sodhi R, Park C (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol 35(3):191–201

    Article  CAS  Google Scholar 

  • Mejía EH, Quintana GC, Ogunsile BO (2014) Development of binderless fiberboards from steam-exploded and oxidized oil palm wastes. BioResources 9(2):2922–2936

    Article  Google Scholar 

  • Mobarak F, Fahmy Y, Augustin H (1982) Binderless lignocellulose composite from bagasse and mechanism of self-bonding. Holzforschung 36(3):131–136

    Article  CAS  Google Scholar 

  • Müller C, Euring M, Kharazipour A (2009) Enzymatic modification of wood fibres for activating their ability of self bonding. Int J Mater Prod Tec 36(1):189–199

    Article  Google Scholar 

  • Nasir M, Gupta A, Beg M, Chua GK, Jawaid M, Kumar A, Khan TA (2013) Fabricating eco-friendly binderless fiberboard from laccase-treated rubber wood fiber. BioResources 8(3):3599–3608

    Article  Google Scholar 

  • Nikvash N, Kharazipour A, Euring M (2012) Effects of wheat protein as a biological binder in the manufacture of particleboards using a mixture of canola, hemp, bagasse, and commercial wood. For Prod J 62(1):49–57

    CAS  Google Scholar 

  • Nikvash N, Kharazipour A, Euring M (2013) Low density particleboards with different kind annual plants by UF/wheat protein adhesives. Holzforschung 54(2):29–35

    Google Scholar 

  • Nyanhongo GO, Kudanga T, Prasetyo EN, Guebitz GM (2010) Mechanistic insights into laccase-mediated functionalisation of lignocellulose material. Biotechnol Genet Eng 27:305–329

    Article  CAS  Google Scholar 

  • Okamoto H, Sano S, Kawai S, Okamoto T, Sasaki H (1994) Production of dimensionally stable medium density fiberboard by use of high-pressure steam pressing. Mokuzai Gakkaishi 40:380–389

    Google Scholar 

  • Okuda N, Hori K, Sato M (2006a) Chemical changes of kenaf core binderless boards during hot pressing (I): influence of the pressing temperature condition. J Wood Sci 52(3):244–248

    Article  CAS  Google Scholar 

  • Okuda N, Hori K, Sato M (2006b) Chemical changes of kenaf core binderless boards during hot pressing (II): effects on the binderless board properties. J Wood Sci 52(3):249–254

    Article  CAS  Google Scholar 

  • Pereira L, Bastos C, Tzanov T, Cavaco PA, Guebizt GM (2005) Environmentally friendly bleaching of cotton using laccases. Environ Chem Lett 3(2):66–69

    Article  CAS  Google Scholar 

  • Pintiaux T, Viet D, Vandenbossche V, Rigao L, Rouilly A (2015) Binderless materials obtained by thermo-compressive processing of lignocellulosic fibers : a comprehensive review. BioResource 10(1):1915–1963

    CAS  Google Scholar 

  • Quintana G, Velasquez J, Betancourt S, Ganan P (2009) Binderless fiberboard from steam exploded banana bunch. Ind Crop Prod 29(1):60–66

    Article  CAS  Google Scholar 

  • Rammon R, Kelley S, Young R, Gillespie R (1982) Bond formation by wood surface reactions part II. Chemical mechanisms of nitric acid activation. J Adhesion 14(3–4):257–282

    Article  CAS  Google Scholar 

  • Riquelme-Valdes J, Ramirez E, Contreras D, Freer J, Rodriguez J (2008) Fiberboard manufactured without resin using the Fenton reaction. J Chil Chem Soc 53(4):1722–1725

    Article  CAS  Google Scholar 

  • Rowell RM, McSweeny JD (2008) Heat treatments of wood fibers for self-bonding and stabilized fiberboards. Mol Cryst Liq Cryst 483(1):307–325

    Article  CAS  Google Scholar 

  • Saadaoui N, Rouilly A, Fares K, Rigal L (2013) Characterization of date palm lignocellulosic by-product and self-bonding composite materials obtained thereof. Mater Design 50:302–308

    Article  CAS  Google Scholar 

  • Saari N, Hashim R, Sulaiman O, Hiziroglu S, Sato M, Sugimoto T (2014) Properties of steam treated binderless particleboard made from oil palm trunks. Compos Part B-Eng 56:344–349

    Article  CAS  Google Scholar 

  • Saheb DN, Jog J (1999) Natural fiber polymer composites: a review. Adv Polym Tech 18(4):351–363

    Article  CAS  Google Scholar 

  • Saito Y, Ishii M, Sato M (2013) The suitable harvesting season and the part of moso bamboo (Phyllostachys pubescens) for producing binderless boards. Wood Sci Technol 47(5):1071–1081

    Article  CAS  Google Scholar 

  • Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110(4):2536–2572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samaniego MRP, Yadama V, Lowell E, Herrera RE (2013) A review of wood thermal pretreatments to improve composite properties. Wood Sci Technol 47:1285–1319

    Article  Google Scholar 

  • Schmidt A, Mallon S, Thomsen AB, Hvilsted S, Lawther J (2002) Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments. J Wood Chem Technol 22(1):39–53

    Article  CAS  Google Scholar 

  • Schopper C, Kharazipour (2006) Development of a wheat protein based adhesive for the production of medium density fiberboards. Review of forest, wood products and wood biotechnology of Iran and Germany. Institute of Forest Botany, Georg-August-University Gottingen, Germany, pp 10–19

  • Shao S, Jin Z, Wen G, Iiyama K (2009) Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin. Wood Sci Technol 43(7–8):643–652

    Article  CAS  Google Scholar 

  • Shen KC (1986) Process for manufacturing composite products from lignocellulosic materials, US Patents 4,627,951

  • Smith AJ (2011) Hot water extraction and subsequent Kraft pulping for pine wood chips. Dissertation, Auburn University, Auburn

  • Sreekala M, Kumaran M, Joseph S, Jacob M, Thomas S (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7(5–6):295–329

    Article  CAS  Google Scholar 

  • Subramanian R, Balaba W, Somasekharan K (1982) Surface modification of wood using nitric acid. J Adhesion 14(3–4):295–304

    Article  CAS  Google Scholar 

  • Suchsland O, Woodson G, McMillin CW (1985) Binderless fiberboard from two different types of fiber furnishes. For Prod J 35(2):63–68

    Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Sun YC, Lin Z, Peng WX, Yuan TQ, Xu F, Wu YQ, Yang J, Wang YS, Sun RC (2014) Chemical changes of raw materials and manufactured binderless boards during hot pressing: lignin isolation and characterization. BioResources 9(1):1055–1071

    Google Scholar 

  • Suzuki S, Shintani H, Park SY, Saito K, Laemsak N, Okuma M, Iiyama K (1998) Preparation of binderless boards from steam exploded pulps of oil palm (Elaeis guneensis Jaxq) fronds and structural characteristics of lignin and wall polysaccharides in steam exploded pulps to be discussed for self-bindings. Holzforschung 52(4):417–426

    Article  CAS  Google Scholar 

  • Takashashi I, Sugimoto T, Takasu Y, Yamasaki M, Sasaki Y, Kikata Y (2010) Preparation of thermoplastic molding from steamed Japanese beech flour. Holzforschung 64(2):229–334

    Google Scholar 

  • Troughton GE, Lum C (2000) Pilot plant evaluation of steam-injection pressing for LVL and plywood products. For Prod J 50(1):25–28

    Google Scholar 

  • Tshabalala MA, McSweeny JD, Rowell RM (2012) Heat treatment of wet wood fiber: a study of the effect of reaction conditions on the formation of furfurals. Wood Mat Sci Eng 7(4):202–208

    Article  CAS  Google Scholar 

  • Van Dam JE, van den Oever MJ, Teunissen W, Keijsers ER, Peralta AG (2004) Process for production of high density/high performance binderless boards from whole coconut husk. Part 1: lignin as intrinsic thermosetting binder resin. Ind Crop Prod 19(3):207–216

    Google Scholar 

  • Velasquez J, Ferrando F, Salvado J (2002) Binderless fiberboard from steam exploded Miscanthus sinensis: the effect of a grinding process. Holz als Roh-und Werkstoff 60(4):297–302

    Article  CAS  Google Scholar 

  • Velasquez J, Ferrando F, Farriol X, Salvado J (2003) Binderless fiberboard from steam exploded Miscanthus sinensis. Wood Sci Technol 37(3–4):269–278

    Article  CAS  Google Scholar 

  • Wellons J, Krahmer R (1973) Self bonding in bark composites. Wood Sci 6(2):112–122

    CAS  Google Scholar 

  • Widsten P (2002) Oxidative activation of wood fibers for the manufacture of medium-density fiberboard (MDF). Helsinki University of Technology, Helsinki

    Google Scholar 

  • Widsten P, Kandelbauer A (2008) Adhesion improvement of lignocellulosic products by enzymatic pre-treatment. Biotechnol Adv 26(4):379–386

    Article  CAS  PubMed  Google Scholar 

  • Widsten P, Qvintus LP, Tuominen S, Laine JE (2003) Manufacture of fiberboard from wood fibers activated with Fentons reagent (H2O2/FeSO4). Holzforschung 57(4):447–452

    Article  CAS  Google Scholar 

  • Widyorini R, Higashihara T, Xu J, Watanabe T, Kawai S (2005a) Self-bonding characteristics of binderless kenaf core composites. Wood Sci Technol 39(8):651–662

    Article  CAS  Google Scholar 

  • Widyorini R, Xu J, Umemura K, Kawai S (2005b) Manufacture and properties of binderless particleboard from bagasse I: effects of raw material type, storage methods, and manufacturing process. J Wood Sci 51(6):648–654

    Article  Google Scholar 

  • Widyorini R, Xu J, Watanabe T, Kawai S (2005c) Chemical changes in steam-pressed kenaf core binderless particleboard. J Wood Sci 51(1):26–32

    Article  CAS  Google Scholar 

  • Xu JY, Han G, Wong E, Kawai S (2003) Development of binderless particleboard from kenaf core using steam-injection pressing. J Wood Sci 49(4):327–332

    Article  Google Scholar 

  • Xu JY, Widyorini R, Kawai S (2005) Properties of kenaf core binderless particleboard reinforced with kenaf bast fiber-woven sheets. J Wood Sci 51(4):415–420

    Article  CAS  Google Scholar 

  • Xu JY, Widyorini R, Yamauchi H, Kawai S (2006) Development of binderless fiberboard from kenaf core. J Wood Sci 52(3):236–243

    Article  Google Scholar 

  • Yan H, Cao Z, Guo W (1996) Study on bonding mechanism of dry-process binderless fiberboards part I. Chemical changes and effects in binderless fiberboard manufacture. For Ind 10(4):3–11

    Google Scholar 

  • Yau ST, Thomas BR, Galkin O, Gliko O, Vekilov PG (2006) Lignin-based polycondensation resins for wood adhesives. J Appl Polym Sci 103(3):1690–1699

    Google Scholar 

  • Ye XP, Julson J, Kuo M, Womac A, Myers D (2007) Properties of medium density fiberboards made from renewable biomass. BioResource Technol 98(5):1077–1084

    Article  CAS  Google Scholar 

  • Young R, Rammon R, Kelley S, Gillespie R (1982) Bond formation by wood surface reaction: part I. Surface analysis by ESCA. Wood Sci 14(3):110–119

    CAS  Google Scholar 

  • Young RA, Fujita M, River BH (1985) New approaches to wood bonding: a base-activated lignin adhesive system. Wood Sci Technol 19(4):363–381

    CAS  Google Scholar 

  • Zadorecki P, Michell AJ (1989) Future prospects for wood cellulose as reinforcement in organic polymer composites. Polym Composite 10(2):69–77

    Article  CAS  Google Scholar 

  • Zhang A, Chen Z, Fan Q, Shao C (2013) A method to produce high density binderless fiberboards. China Patents 201,210,541,382.X

  • Zhang A, Chen Z, Shao C, Song H, Wu K (2014a) A method to manufacture binderless fiberboards made from wood fibers. China Patents 201,110,411,549.6

  • Zhang A, Han Z, Xue L (2014b) A non-formaldehyde wood fiberboard production methods, China Patents 201,410,076,627.5

  • Zhou X, Zheng F, Lv C, Tang L, Wei K, Liu X, Du G, Yong Q, Xue G (2013) Properties of formaldehyde-free environmentally friendly lignocellulosic composites made from poplar fibres and oxygen-plasma-treated enzymatic hydrolysis lignin. Compos Part B-Eng 53:369–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate financial supports from National Natural Science Foundation of China (No. 51273211 and 51103171), the Ministry of Science and Technology of China (No. 2012AA03A605, 2012DFR50470 and 2014BAJ02B02), Bureau of Science and Technology of Ningbo (No. 2014B81004, 2014S10007, 2014B70023 and 2013C910012) and Ningbo Natural Science Foundation (No. 2014A610137, 2014A610138 and 2014A610194).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjiang Zhang or Lixin Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhang, A. & Xue, L. A review of preparation of binderless fiberboards and its self-bonding mechanism. Wood Sci Technol 49, 661–679 (2015). https://doi.org/10.1007/s00226-015-0728-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0728-6

Keywords

Navigation