Skip to main content
Log in

Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.)

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Recently, a number of studies on health benefits associated with natural compounds have been demonstrated. Phenolics in fruits, vegetables, herbs and spices possess potent antioxidant, anti-inflammatory, antimutagenic and anticarcinogenic activities. The fringe tree (Chionanthus virginicus) is used as a raw material by pharmaceutical industries for the preparation of homeopathy tinctures. The potential antioxidant activities of two secoiridoids from root bark of fringe tree (Chionanthus virginicus L.) were investigated to evaluate their potential value as the natural products for foods or cosmetic applications. In this study, antioxidant activities were measured by 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH·) scavenging, superoxide anion (O ·−2 ) radical scavenging, total antioxidant activity, reducing activity, hydrogen peroxide (H2O2) scavenging and ferrous metal chelating activity assays. These secoiridoids, as antioxidants neutralized the activities of radicals and inhibited the peroxidation reactions of linoleic acid emulsion. Total antioxidant activity was measured according to ferric thiocyanate method. Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and trolox, a water-soluble analog of tocopherol, were used as the reference antioxidant compounds. Ligustroside (3.70 × 10−3 M) and oleuropein (3.80 × 10−3 M) showed 71.9, 82.4, 80.7 and 90.4% inhibition on lipid peroxidation of linoleic acid emulsion, at the concentrations of 10 and 20 μg/mL. On the other hand, 20 μg/mL of standard antioxidant such as α-tocopherol (4.64 × 10−3 M), trolox (7.98 × 10−3 M), BHA (10.08 × 10−3 M) and BHT (9.06 × 10−3 M) exhibited 61.5, 29.8, 74.4 and 71.2% inhibition on peroxidation of linoleic acid emulsion, respectively. In addition, ligustroside and oleuropein had effective DPPH·, ABTS·+ and superoxide anion radicals scavenging, hydrogen peroxide scavenging, total reducing power and metal chelating on ferrous ions activities. Also, those various antioxidant activities were compared to BHA and BHT, α-tocopherol and trolox that are references antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Ismail KM, Aburjai T (1989) Antioxidant activity of water and alcohol extracts of chamomile flowers, anise seeds and dill seeds. J Sci Food Agric 84:173–178

    Article  CAS  Google Scholar 

  • Baardseth P (1989) Effect of selected antioxidants on the stability of dehydrated mashed potatoes. Food Addit Contam 6:201–207

    PubMed  CAS  Google Scholar 

  • Bast A, Haenen GRMM, Doelman CJA (1991) Oxidants and antioxidants: state of the art. Am J Med 91:2–13

    Article  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200

    Article  Google Scholar 

  • Boyer L, Elias R, Taoubi K, Debrauwer L, Faure R, Baghdikian B, Balansard G (2005) Lignans and secoiridoids from root bark of Chionanthus virginicus L.: isolation, identification and HPLC analysis. Phytochem Anal 16:380–387

    Article  CAS  Google Scholar 

  • Büyükokuroğlu ME, Gülçin İ, Oktay M, Küfrevioğlu Öİ (2001) In vitro antioxidant properties of dantrolene sodium. Pharmacol Res 44:491–495

    Article  PubMed  CAS  Google Scholar 

  • Cos P, Ying LY, Calomme M, Hu JH, Cimanga K, Van Poel B, Pieters L, Vlietinck AJ, Berghe DV (1998) Structure activity relationships and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61:71–76

    Article  PubMed  CAS  Google Scholar 

  • Cristiane de Souza L, Soares de Araujo SM, Imbroisi DO (2004) Determination of the free radical scavenging activity of dihydropyran-2,4-diones. Bioorg Med Chem Lett 14:5859–5861

    Article  CAS  Google Scholar 

  • De la Puerta R, Martinez Dominguez ME, Ruiz-Gutierrez V, Flavill JA, Hoult JR (2001) Effects of virgin olive oil phenolics on scavenging of reactive nitrogen species and upon nitrergic neurotransmission. Life Sci 69:1213–1222

    Article  Google Scholar 

  • Dinis TCP, Madeira VMC, Almeida LM (1994) Action of phenolic derivates (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315:161–169

    Article  PubMed  CAS  Google Scholar 

  • Duh PD, Tu YY, Yen GC (1999) Antioxidant activity of water extract of harng jyur (Chrysanthemum morifolium Ramat). Lebensm Wiss Technol 32:269–277

    Article  CAS  Google Scholar 

  • Duke JA, Wain KK (1981) In medicinal plants of world. Computer index with more than 85000 entries, 3 vols. p 1654

  • Eklund PC, Langvik OK, Wärna JP, Salmi TP, Willför SM, Sjöholm RE (2005) Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Org Biomol Chem 3:3336–3347

    Article  PubMed  CAS  Google Scholar 

  • Elmastaş M, Gülçin İ, Beydemir Ş, Küfrevioğlu Öİ, Aboul-Enein HY (2006a) A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) seeds extracts. Anal Lett 39:47–65

    Article  CAS  Google Scholar 

  • Elmastaş M, Gülçin İ, Işıldak Ö, Küfrevioğlu Öİ, İbaoğlu K, Aboul-Enein HY (2006b) Antioxidant capacity of bay (Laurus nobilis L.) leave e extracts. J Iran Chem Soc 3:258–266

    Google Scholar 

  • Elmastaş M, Türkekul İ, Öztürk L, Gülçin İ, Işıldak Ö, Aboul-Enein HY (2006c) The antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta). Comb Chem High T Scr 9:443–448

    Google Scholar 

  • Finefrock AE, Bush AI, Doraiswamy PM (2003) Current status of metals as therapeutic targets in Alzheimer’s disease. J Am Geriat Soc 51:1143–1148

    Article  PubMed  Google Scholar 

  • Guermonprez M, Pinkas M, Tork M (1997) Chionanthus virginiana. In: Matiere Medicale Homeopathique, 2nd edn, pp 144–145

  • Gülçin İ (2006a) Antioxidant and antiradical activities of l-Carnitine. Life Sci 78:803–811

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ (2006b) Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology 217:213–220

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ (2007) Comparison of in vitro antioxidant and antiradical activities of l-tyrosine and l-dopa. Amino Acids 32:431–438

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Daştan A (2007) Synthesis of dimeric phenol derivatives and determination of in vitro antioxidant and radical scavenging activities. J Enzym Inhib Med Chem 22:685–695

    Article  CAS  Google Scholar 

  • Gülçin İ, Büyükokuroğlu ME, Oktay M, Küfrevioğlu Öİ (2002a) On the in vitro antioxidant properties of melatonin. J Pineal Res 33:167–171

    Article  PubMed  Google Scholar 

  • Gülçin İ, Oktay M, Küfrevioğlu Öİ, Aslan A (2002b) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329

    Article  PubMed  Google Scholar 

  • Gülçin İ, Büyükokuroğlu ME, Oktay M, Küfrevioğlu Öİ (2003a) Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. Subsp. pallsiana (Lamb.) Holmboe. J Ethnopharmacol 86:51–58

    Article  PubMed  Google Scholar 

  • Gülçin İ, Oktay M, Kireçci E, Küfrevioğlu Öİ (2003b) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382

    Article  CAS  Google Scholar 

  • Gülçin İ, Beydemir Ş, Alici HA, Elmastaş M, Büyükokuroğlu ME (2004a) In vitro antioxidant properties of morphine. Pharmacol Res 49:59–66

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Küfrevioğlu Öİ, Oktay M, Büyükokuroğlu ME (2004b) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215

    Article  PubMed  Google Scholar 

  • Gülçin İ, Şat İG, Beydemir Ş, Elmastaş M, Küfrevioğlu Öİ (2004c) Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem 87:393–400

    Article  CAS  Google Scholar 

  • Gülçin İ, Şat İG, Beydemir Ş, Küfrevioğlu Öİ (2004d) Evaluation of the in vitro antioxidant properties of extracts of broccoli (Brassica oleracea L.). Ital J Food Sci 16:17–30

    Google Scholar 

  • Gülçin İ, Berashvili D, Gepdiremen A (2005) Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne. J Ethnopharmacol 101:287–293

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Elias R, Gepdiremen A, Boyer L (2006a) Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.). Eur Food Res Technol 223:759–767

    Article  CAS  Google Scholar 

  • Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2006b) Screening of antioxidant and antiradical activity of monodesmosides and crude extract from Leontice smirnowii Tuber. Phytomedicine 20:130–134

    Google Scholar 

  • Gülçin İ, Elmastas M, Aboul-Enein HY (2007) Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum) assayed by different methodologies. Phytother Res 21:354–361

    Article  PubMed  CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Ser A 147:332–351

    Article  CAS  Google Scholar 

  • Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry and role in human disease. Am J Med 91:14–22

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicology, oxygen radicals, transition metals and disease. Biochem J 219:1–4

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1989) Free radicals in biology and medicine. Clarendon Press, Oxford, pp 23–30

    Google Scholar 

  • Hamdi HK, Castellon R (2005) Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochem Biophys Res Commun 334:769–778

    Article  PubMed  CAS  Google Scholar 

  • Hamdi HK, Tavis JH, Castellon R (2003) In: USPTO, Antigen Biologicals Corporation, USA

  • Harborne JB, Green PS (1980) A chemotaxonomic survey of flavonoids in leaves of the Oleaceae. Bot J Linn Soc 81:155–167

    Article  CAS  Google Scholar 

  • He ZD, Dong H, Xu HX, Ye WC, Sun HD, But PPH (2001) Secoiridoid constituents from the fruits of Ligustrum lucidum. Phytochemistry 56:327–330

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP (2000) The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JE, Frankel E, German B, Kanner J (1993) Possible mechanism for the protective role of the antioxidant in wine and plant foods. Food Technol 47:85–89

    CAS  Google Scholar 

  • Kumarasamy Y, Nahar L, Cox PJ, Jaspars M, Sarker SD (2003) Bioactivity of secoiridoid glycosides from Centaurium erythraea. Phytomedicine 10:344–347

    Article  PubMed  CAS  Google Scholar 

  • Lai LS, Chou ST, Chao WW (2001) Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J Agric Food Chem 49:963–968

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Zhu G, Huang P (1991) Anti-inflammatory, analgesic and sedative effects of Leontice kiangnanensis. Zhongguo Zhong Yao Za Zhi 161:50–65

    Google Scholar 

  • Liyana-Pathirana CM, Shahidi F (2006) Antioxidant properties of commercial soft and hard winter wheats (Triticum aestivum L.) and their milling fractions. J Sci Food Agric 86:477–485

    Article  CAS  Google Scholar 

  • Manna C, D’Angelo S, Migliardi V, Loffredi E, Mazzoni O, Morrica P, Galletti P, Zappia V (2002) Protective effect of the phenolic fraction from virgin olive oils against oxidative stress in human cells. J Agric Food Chem 50:6521–6526

    Article  PubMed  CAS  Google Scholar 

  • Miller DD (1996) Mineral. In: Fennema OR (ed) Food chemistry. Marcel Deckker, New York, pp 618–649

    Google Scholar 

  • Miller NJ, Castelluccio C, Tijburg L, Rice-Evans CA (1996) The antioxidant properties of thioflavines and their gallate esters—radical scavengers or metal chelator? FEBS Lett 392:40–44

    Article  PubMed  CAS  Google Scholar 

  • Min DB (1998) Lipid oxidation of edible oil. In: Akoh CC, Min DB (eds) Food lipids chemistry, nutrition and biotechnology. Marcel Dekker, New York, pp 283–296

    Google Scholar 

  • Mitsuda H, Yuasumoto K, Iwami K (1996) Antioxidation action of indole compounds during the autoxidation of linoleic acid. Eiyo to Shokuryo 19:210–214

    Google Scholar 

  • Oktay M, Gülçin İ, Küfrevioğlu Öİ (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebensm Wiss Technol 36:263–271

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on product of browning reaction prepared from glucose amine. Jpn J Nutr 44:307–315

    CAS  Google Scholar 

  • Parejo I, Viladomat F, Bastida J, Rosas-Romero A, Flerlage N, Burillo J, Codına C (2002) Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled Mediterranean herbs and aromatic plants. J Agric Food Chem 50:6882–6890

    Article  PubMed  CAS  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Pourra H, Le Men J, Boustany N (1954) Ursolic acid; disturbtion of ursolic acid in Oleaceae. Ann Pharm Fr 12:59–62

    Google Scholar 

  • Pryor WA (1991) The antioxidant nutrient and disease prevention—what do we know and what do we need to find out? Am J Clin Nutr 53:391–393

    Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Sherwin ER (1990) Antioxidants. In: Branen AL, Davidson PM, Salminen S (eds) Food additives. Marvel Dekker inc, New York, pp 139–193

    Google Scholar 

  • Singh RP, Murthy KNC, Jayaprakasha GK (2002) Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem 50:81–86

    Article  PubMed  CAS  Google Scholar 

  • Steinegger E, Jacober H (1959) Presence of phillyrin in the Oleaceae. Structure of chionanthins. Pharm Acta Helv 34:585–592

    PubMed  CAS  Google Scholar 

  • Strlic M, Radovic T, Kolar J, Pihlar B (2002) Anti- and prooxidative properties of gallic acid in Fenton-type systems. J Agric Food Chem 50:6313–6317

    Article  PubMed  CAS  Google Scholar 

  • Sun B, Fukuhara M (1997) Effects of co-administration of butylated hydroxytoluene, butylated hydroxyanisole and flavonoids on the activation of mutagens and drug metabolizing enzymes in mice. Toxicology 122:61–72

    Article  PubMed  CAS  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Visioli F, Bellosta S, Galli C (1998) Oleuropein, the bitter principle of olives, enhances nitric oxide production by mouse macrophages. Life Sci 62:541–546

    Article  PubMed  CAS  Google Scholar 

  • Wichi HP (1988) Enhanced tumor development by butylated hydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem Toxicol 26:717–723

    Article  Google Scholar 

  • Wickens AP (2001) Aging and the free radical theory. Reportor Physiol 128:379–391

    Article  CAS  Google Scholar 

  • Wong PYY, Kitts DD (2001) An iron binding assay to measure activity of known food sequestering agents: studies with buttermilk solids. Food Chem 72:245–254

    Article  CAS  Google Scholar 

  • Yamaguchi F, Ariga T, Yoshimira Y, Nakazawa H (2000) Antioxidant and antiglycation of carcinol from Garcinia indica fruit rind. J Agric Food Chem 48:180–185

    Article  PubMed  CAS  Google Scholar 

  • Yen GC, Duh PD (1994) Scavenging effect of methanolic extract of peanut hulls on free radical and active oxygen species. J Agric Food Chem 42:629–632

    Article  CAS  Google Scholar 

  • Zhu QY, Hackman RM, Ensunsa JL, Holt R, Keen CL (2002) Antioxidative activities of oolong tea. J Agric Food Chem 50:6929–6934

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlhami Gülçin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gülçin, İ., Elias, R., Gepdiremen, A. et al. Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Sci Technol 43, 195–212 (2009). https://doi.org/10.1007/s00226-008-0234-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-008-0234-1

Keywords

Navigation