Skip to main content
Log in

The Rank-Width of Edge-Coloured Graphs

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

A C-coloured graph is a graph, that is possibly directed, where the edges are coloured with colours from the set C. Clique-width is a complexity measure for C-coloured graphs, for finite sets C. Rank-width is an equivalent complexity measure for undirected graphs and has good algorithmic and structural properties. It is in particular related to the vertex-minor relation. We discuss some possible extensions of the notion of rank-width to C-coloured graphs. There is not a unique natural notion of rank-width for C-coloured graphs. We define two notions of rank-width for them, both based on a coding of C-coloured graphs by \({\mathbb{F}}^{*}\)-graphs—\(\mathbb {F}\)-coloured graphs where each edge has exactly one colour from \(\mathbb{F}\setminus \{0\},\ \mathbb{F}\) a field—and named respectively \(\mathbb{F}\) -rank-width and \(\mathbb {F}\) -bi-rank-width. The two notions are equivalent to clique-width. We then present a notion of vertex-minor for \(\mathbb{F}^{*}\)-graphs and prove that \(\mathbb{F}^{*}\)-graphs of bounded \(\mathbb{F}\)-rank-width are characterised by a list of \(\mathbb{F}^{*}\)-graphs to exclude as vertex-minors (this list is finite if \(\mathbb{F}\) is finite). An algorithm that decides in time O(n 3) whether an \(\mathbb{F}^{*}\)-graph with n vertices has \(\mathbb{F}\)-rank-width (resp. \(\mathbb{F}\)-bi-rank-width) at most k, for fixed k and fixed finite field \(\mathbb{F}\), is also given. Graph operations to check MSOL-definable properties on \(\mathbb{F}^{*}\)-graphs of bounded \(\mathbb{F}\)-rank-width (resp. \(\mathbb{F}\)-bi-rank-width) are presented. A specialisation of all these notions to graphs without edge colours is presented, which shows that our results generalise the ones in undirected graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. G[X] is oriented (or undirected) if G is oriented (or undirected).

  2. Note that symmetric and skew-symmetric matrices are σ-symmetric.

References

  1. Adler, I., Bui-Xuan, B., Rabinovich, Y., Renault, G., Telle, J.A., Vatshelle, M.: On the Boolean-width of a graph: structure and applications. In: Thilikos, D.M. (ed.) WG, LNCS, vol. 6410, pp. 159–170. Springer, Berlin (2010)

    Google Scholar 

  2. Bui-Xuan, B., Habib, M., Limouzy, V., de Montgolfier, F.: Unifying two graph decompositions with modular decomposition. In: Tokuyama, T. (ed.) ISAAC, LNCS, vol. 4835, pp. 52–64. Springer, Berlin (2007)

    Google Scholar 

  3. Bui-Xuan, B., Telle, J.A., Vatshelle, M.: H-join decomposable graphs and algorithms with runtime single exponential in rank-width. Discrete Appl. Math. 158(7), 809–819 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchet, A.: Digraph decompositions and Eulerian systems. SIAM J. Algebr. Discrete Methods 8(3), 323–337 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchet, A.: Circle graph obstructions. J. Comb. Theory, Ser. B 60(1), 107–144 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blumensath, A., Courcelle, B.: Recognisability, hypergraph operations and logical types. Inf. Comput. 204(6), 853–919 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corneil, D.G., Habib, M., Lanlignel, J., Reed, B.A., Rotics, U.: Polynomial time recognition of clique-width≤3 graphs. In: Gonnet, G.H., Panario, D., Viola, A. (eds.) LATIN, LNCS, vol. 1776, pp. 126–134. Springer, Berlin (2000)

    Google Scholar 

  8. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: Basic notions of universal algebra for language theory and graph grammars. Theor. Comput. Sci. 163(1–2) 1–54 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courcelle, B.: The monadic second-order logic of graphs XV: on a conjecture by D. Seese. J. Appl. Log. 4(6), 79–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language Theoretic Approach. Encyclopedia of Mathematics and Its Applications, vol. 138. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  12. Courcelle, B.: On the model-checking of monadic second-order formulas with edge set quantifications. Discrete Appl. Math. (2012, to appear). doi:10.1016/j.dam.2010.12.017

  13. Courcelle, B., Kanté, M.M.: Graph operations characterising rank-width. Discrete Appl. Math. 157(4), 627–640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Courcelle, B., Makowsky, J.A.: Fusion in relational structures and the verification of monadic second-order properties. Math. Struct. Comput. Sci. 12, 203–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimisation problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Courcelle, B., Olariu, S.: Upper bounds to the clique-width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic and a conjecture by Seese. J. Comb. Theory, Ser. B 97(1), 91–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebr. Discrete Methods 3(2), 214–228 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diestel, R.: Graph Theory, 3rd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures: A Framework for Decomposition and Transformation of Graphs. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  21. Fellows, M., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fisher, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Appl. Math. 156(4), 511–529 (2008)

    Article  MathSciNet  Google Scholar 

  23. Flarup, U., Lyaudet, L.: On the expressive power of permanents and perfect matchings of matrices of bounded pathwidth/cliquewidth. Theory Comput. Syst. 46(4), 761–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fon-Der-Flaass, D.G.: Local complementation of simple and directed graphs. In: Discrete Analysis and Operations Research, vol. 1, pp. 15–34 (1996)

    Chapter  Google Scholar 

  25. Ganian, R., Hliněný, P., Obdrzálek, J.: Unified approach to polynomial algorithms on graphs of bounded (bi-)rank-width. (2012, submitted)

  26. Ganian, R., Hliněný, P., Obdrzálek, J.: Better algorithms for satisfiability problems for formulas of bounded rank-width. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS, LIPIcs, vol. 8, pp. 73–83. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Saarbrücken (2010)

    Google Scholar 

  27. Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdrzálek, J., Rossmanith, P.: On digraph width measures in parameterized algorithmics. In: Chen, J., Fomin, F.V. (eds.) IWPEC, LNCS, vol. 5917, pp. 185–197. Springer, Berlin (2009)

    Google Scholar 

  28. Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discrete Appl. Math. 158(7), 851–867 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ganian, R., Hliněný, P., Kneis, J., Meister, D., Obdrzálek, J., Rossmanith, P., Sikdar, S.: Are there any good digraph width measure? In: Raman, V., Saurabh, S. (eds.) IPEC, LNCS, vol. 6478, pp. 135–146. Springer, Berlin (2010)

    Google Scholar 

  30. Geelen, J.F., Gerards, A.M.H., Whittle, G.P.: Branch-width and well-quasi-ordering in matroids and graphs. J. Comb. Theory, Ser. B 84(2), 270–290 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Geelen, J.F., Gerards, A.M.H., Robertson, N., Whittle, G.P.: On the excluded minors for the matroids of branch-width k. J. Comb. Theory, Ser. B 88(2), 261–265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Geelen, J.F., Gerards, A.M.H., Whittle, G.P.: Excluding a planar graph from GF(q)-representable matroids. J. Comb. Theory, Ser. B 97(6), 971–998 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Geelen, J.F., Gerards, A.M.H., Whittle, G.P.: Towards a matroid minor structure theory. In: G. Grimmett and C. McDiarmid (eds.) Combinatorics, Complexity and Chance—A Tribute to Dominic Welsh, Chap. 5

  34. Hliněný, P.: Branch-width parse trees, and monadic second-order logic for matroids. J. Comb. Theory, Ser. B 96(3), 325–351 (2006)

    Article  MATH  Google Scholar 

  35. Hliněný, P.: The tutte polynomial for matroids of bounded branch-width. Comb. Probab. Comput. 15(3), 397–409 (2006)

    Article  MATH  Google Scholar 

  36. Hliněný, P., Oum, S.: Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38(3), 1012–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kaminski, M., Lozin, V.V., Recent, M.M.: Developments on graphs of bounded clique-width. Discrete Appl. Math. 157(12), 2747–2761 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kanté, M.M.: The rank-width of directed graphs. arXiv:0709.1433 (2008)

  39. Kanté, M.M.: Well-quasi-ordering of matrices under Schur complement and applications to directed graphs. Eur. J. Comb. (2012, accepted). doi:10.1016/j.ejc.2012.03.034. arXiv:1102.2134

    MATH  Google Scholar 

  40. Kanté, M.M., Rao, M.: Directed rank-width and displit decomposition. In: Paul, C., Habib, M. (eds.) WG, LNCS, vol. 5911, pp. 214–225. Springer, Berlin (2009)

    Google Scholar 

  41. Kanté, M.M., Rao, M.: Bipartitive decomposition of 2-structures. Manuscript (2010)

  42. Lipschutz, S.: Schaum’s Outline of Theory and Problems of Linear Algebra, 2nd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  43. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  44. Lozin, V.V., Rautenbach, D.: The relative clique-width of a graph. J. Comb. Theory, Ser. B 97(5), 846–858 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Oum, S.: Rank-width and vertex-minors. J. Comb. Theory, Ser. B 95(1), 79–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Oum, S.: Rank-width and well-quasi-ordering. SIAM J. Discrete Math. 22(2), 666–682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Robertson, N., Seymour, P.D.: Graph minors II: algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  49. Robertson, N., Seymour, P.D.: Graph Minors I to XX

  50. Strozecki, Y.: Monadic second-order model-checking on decomposable matroids. Discrete Appl. Math. 159(10), 1022–1039 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency, vol. B. Springer, Berlin (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Moustapha Kanté.

Additional information

This research is supported by the DORSO project of “Agence Nationale Pour la Recherche”.

Appendix: Proofs of Propositions 3.12 and 4.4

Appendix: Proofs of Propositions 3.12 and 4.4

If \(R\subseteq\{1,\ldots,k\}\times\{1,\ldots,k\}\times \mathbb{F}\), we let ◯ R be the composition of the functions \(add_{i,j}^{a}\) with (i,j,a)∈R. This notation is non ambiguous because \(add_{i,j}^{a}\circ add_{k,l}^{b} =add_{k,l}^{b}\circ add_{i,j}^{a}\).

Proof of Proposition 3.12.

(1) Assume \(G=\mathit{val}(t)\) for some term t in \(T(\mathcal{F}_{k}^{\mathbb{F}},\mathcal{C}_{k})\). In order to prove that is a layout of V G of \(\operatorname {cutrk}^{{\mathbb{F}}}_{G}\)-width at most k, it is enough to prove that for every subgraph H of G that is a value of a sub-term t′ of t, \(\operatorname {cutrk}^{{\mathbb{F}}}_{G}(V_{H})\leq k\). But, by the definition of operations in \(\mathcal{F}_{k}^{\mathbb{F}}\), the sub-matrix M G [V H ,V G V H ] has at most k distinct rows. Thus, \(\operatorname {cutrk}^{{\mathbb{F}}}_{G}(V_{H}) =\operatorname{rk}({ M_{G}}[{V_{H}},{V_{G}\setminus V_{H}}])\leq k\).

(2) Assume \((T,\mathcal{L})\) is a layout of V G of \(\operatorname {cutrk}^{{\mathbb{F}}}_{G}\)-width k. Then, by Theorem 5.4 we can construct in time O(k 2⋅|V G |2) a term t in \(T(\mathcal{R}_{k}^{(\mathbb{F},\sigma)},\mathcal{C}_{k}^{\mathbb{F}})\) such that \(G=\mathit{val}(t)\) and . We will construct inductively, on the size of t, a term t′ in \(T(\mathcal{F}_{k'}^{\mathbb{F}},\mathcal{C}_{k'})\) with k′≤2⋅q k−1 such \(G=\mathit{val}(t')\). We let \(\beta:\mathbb{F}^{k}\to \{1,\ldots, q^{k}\}\) be a bijective function that enumerates the set of vectors in \(\mathbb{F}^{k}\) with β(O 1,k )=1. We let {2′,…,(q k)′} be a disjoint copy of the set {2,…,q k}. If \(t=\mathbf {u}\), then we let \(t':=\mathbf {\beta(u)}\). Suppose then that t=t 1 M,N,P t 2. Then, we let

where R:={(β(u),β(v)′,λ)∣uMσ(v)T=λ}, R′:={(β(v)′,β(u),σ(λ))∣uMσ(v)T=λ}, h:{1,…,q k}→{1}∪{2′,…,(q k)′} is such that h(1)=1 and h(i):=i′, g:{1,…,q k}→{1,…,q k} is such that g(i):=β(β −1(i)⋅N), g′:{1}∪{2′,…,(q k)′}→{1,…,q k} is such that g′(1):=1 and g′(i′):=β(β −1(i)⋅P).

It is a straightforward induction to check that \(G=\mathit{val}(t')\) and that . □

Proof of Proposition 4.4.

(1) Assume \(G=\mathit{val}(t)\) for some term t in \(T(\mathcal{F}_{k}^{\mathbb{F}},\mathcal{C}_{k})\). In order to prove that is a layout of V G of \(\operatorname {bicutrk}^{{\mathbb{F}}}_{G}\)-width at most k, it is enough to prove that for every subgraph H of G that is a value of a sub-term t′ of t, \(\operatorname {bicutrk}^{{\mathbb{F}}}_{G}(V_{H})\leq2k\). But, by the definition of operations in \(\mathcal{F}_{k}^{\mathbb{F}}\), the sub-matrices M G [V H ,V G V H ] and M G [V G V H ,V H ] have at most k distinct rows. Thus, \(\operatorname {bicutrk}^{{\mathbb{F}}}_{G}(V_{H}) =\operatorname{rk}({ M_{G}}[{V_{H}},{V_{G}\setminus V_{H}}]) +\operatorname{rk}({ M_{G}}[{V_{G}\setminus V_{H}},{V_{H}}]) \leq2k\).

(2) Assume \((T,\mathcal{L})\) is a layout of V G of \(\operatorname {bicutrk}^{{\mathbb{F}}}_{G}\)-width k. Then, by Theorem 5.4 we can construct in time O(k 2⋅|V G |2) a term t in \(T(\mathcal{BR}_{k}^{\mathbb{F}},\mathcal{BC}_{k}^{\mathbb{F}})\) such that \(G=\mathit{val}(t)\) and . We will construct inductively, on the size of t, a term t′ in \(T(\mathcal{F}_{k'}^{\mathbb{F}},\mathcal{C}_{k'})\) with k′≤2⋅q k−1 such \(G=\mathit{val}(t')\). For each pair (k 1,k 2) with k 1+k 2k, we let \(\alpha_{k_{1},k_{2}}:\mathbb{F}^{k_{1}}\times \mathbb{F}^{k_{2}}\to\{1,\ldots,q^{k_{1}+k_{2}}\}\) be a bijective function that enumerates the set of pairs of vectors in \(\mathbb{F}^{k_{1}}\times \mathbb{F}^{k_{2}}\) with \(\alpha_{k_{1},k_{2}}((O_{1,k_{1}},O_{1,k_{2}}))=1\). We let {2′,…,(q k)′} be a disjoint copy of the set {2,…,q k}.

If \(t=\mathbf {u\cdot v}\), then we let \(t':=\mathbf {\alpha_{1,1}((u,v))}\). Suppose now that \(t=t_{1}\otimes_{M_{1},M_{2},N_{1},N_{2},P_{1},P_{2}} t_{2}\) with M 1,M 2,N 1,N 2,P 1,P 2 being respectively k 1× 1, k 2× 2, \(k_{1}\times k'_{1}\), \(k_{2}\times k'_{2}\), \(\ell_{1}\times k'_{1}\) and \(\ell_{2}\times k'_{2}\)-matrices. Then, we let

where \(R:= \{(i,j',c)\mid i=\alpha_{k_{1},k_{2}}((u_{1},u_{2})),j=\alpha_{\ell_{1},\ell_{2}}((v_{1},v_{2}))\ \textrm{and}\ u_{1}\cdot M_{1}\cdot v_{1}^{T}=c\}\), \(R':= \{(j',i,c)\mid j=\alpha_{\ell_{1},\ell_{2}}((v_{1},v_{2})),i=\alpha_{k_{1},k_{2}}((u_{1},u_{2})),\ \textrm{and}\ u_{2}\cdot M_{2}\cdot v_{2}^{T}=c\}\), h:{1,…,q k}→{1}∪{2′,…,(q k)′} is such that h(1)=1 and h(i):=i′, g:{1,…,q k}→{1,…,q k} is such that if \(\alpha_{k_{1},k_{2}}^{-1}(i)=(u_{1},u_{2})\), then \(g(i) :=\alpha_{k'_{1},k'_{2}}((u_{1}\cdot N_{1},u_{2}\cdot N_{2}))\), g′:{1}∪{2′,…,(q k)′}→{1,…,q k} is such that g′(1):=1 and if \(\alpha_{\ell_{1},\ell_{2}}^{-1}(i) =(v_{1},v_{2})\), then \(g'(i') := \alpha_{k'_{1},k'_{2}}((v_{1}\cdot P_{1},v_{2}\cdot P_{2}))\).

An easy induction shows that \(G=\mathit{val}(t')\) and that . □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanté, M.M., Rao, M. The Rank-Width of Edge-Coloured Graphs. Theory Comput Syst 52, 599–644 (2013). https://doi.org/10.1007/s00224-012-9399-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-012-9399-y

Keywords

Navigation