Skip to main content

Advertisement

Log in

Silencing Proteasome 26S Subunit ATPase 2 (PSMC2) Protects the Osteogenic Differentiation In Vitro and Osteogenesis In Vivo

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoporosis is a commonly seen degenerative bone disorder in the elderly and postmenopausal women, with a low bone mineral density as a major risk factor. The osteogenic potential of bone marrow stromal cells (BMSCs) showed to be impaired during osteoporosis. We established a postmenopausal osteoporosis model in ovariectomized (OVX) mice and found the upregulation of proteasome 26S subunit ATPase 2 (PSMC2) in OVX mice. PSMC2 silencing improved OVX-impaired biomechanical properties of mice femur, OVX-decreased BMD, and OVX-destroyed bone structure. Histopathological analysis indicated that PSMC2 silencing improved bone trabecular structure and increased the contents of collagen fibers and newly formed bone or cartilage in OVX mice. In the meantime, PSMC2 silencing increased Runx2, PI3K, Wnt3a, and β-catenin protein contents while reduced CTSK protein. Within BMSCs isolated from OVX mice, PSMC2 silencing promoted BMSC osteogenic differentiation and elevated osteogenic markers’ protein contents, including HOXA10, Runx2, OCN, OPN, and COL1A2. In conclusion, PSMC2 expression is upregulated in the postmenopausal osteoporosis model in OVX mice. PSMC2 silencing promotes the osteogenic differentiation of BMSCs in vitro, promotes bone formation, and inhibits bone resorption in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kendler D (2011) Osteoporosis: therapies now and in the future. Climacteric 14:604–605

    PubMed  Google Scholar 

  3. Sambrook P, Cooper C (2006) Osteoporosis Lancet 367:2010–2018

    Article  CAS  PubMed  Google Scholar 

  4. Selby P (2004) Postmenopausal osteoporosis. Curr Osteoporos Rep 2:101–106

    Article  PubMed  Google Scholar 

  5. Watts NB (1999) Postmenopausal osteoporosis. Obstet Gynecol Surv 54:532–538

    Article  CAS  PubMed  Google Scholar 

  6. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801

    Article  CAS  PubMed  Google Scholar 

  7. Bianco P, Sacchetti B, Riminucci M (2011) Stem cells in skeletal physiology and endocrine diseases of bone. Endocr Dev 21:91–101

    Article  CAS  PubMed  Google Scholar 

  8. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389

    Article  CAS  PubMed  Google Scholar 

  9. Liao L, Yang X, Su X, Hu C, Zhu X, Yang N, Chen X, Shi S, Shi S, Jin Y (2013) Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis 4:e600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stolzing A, Scutt A (2006) Age-related impairment of mesenchymal progenitor cell function. Aging Cell 5:213–224

    Article  CAS  PubMed  Google Scholar 

  11. Liao L, Su X, Yang X, Hu C, Li B, Lv Y, Shuai Y, Jing H, Deng Z, Jin Y (2016) TNF-alpha inhibits FoxO1 by upregulating miR-705 to aggravate oxidative damage in bone marrow-derived mesenchymal stem cells during osteoporosis. Stem Cells 34:1054–1067

    Article  CAS  PubMed  Google Scholar 

  12. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH (2015) MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 125:1509–1522

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jing H, Liao L, An Y, Su X, Liu S, Shuai Y, Zhang X, Jin Y (2016) Suppression of EZH2 prevents the shift of osteoporotic MSC fate to adipocyte and enhances bone formation during osteoporosis. Mol Ther 24:217–229

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Fan L, Hu J, Zhang L, Liao L, Liu S, Wu D, Yang P, Shen L, Chen J, Jin Y (2015) MiR-26a rescues bone regeneration deficiency of mesenchymal stem cells derived from osteoporotic mice. Mol Ther 23:1349–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192

    Article  CAS  PubMed  Google Scholar 

  17. Zhong Z, Chen A, Fa Z, Ding Z, Xiao L, Wu G, Wang Q, Zhang R (2020) Bone marrow mesenchymal stem cells upregulate PI3K/AKT pathway and down-regulate NF-kappaB pathway by secreting glial cell-derived neurotrophic factors to regulate microglial polarization and alleviate deafferentation pain in rats. Neurobiol Dis 143:104945

    Article  CAS  PubMed  Google Scholar 

  18. Zhao SJ, Kong FQ, Jie J, Li Q, Liu H, Xu AD, Yang YQ, Jiang B, Wang DD, Zhou ZQ, Tang PY, Chen J, Wang Q, Zhou Z, Chen Q, Yin GY, Zhang HW, Fan J (2020) Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3beta/beta-catenin pathway. Theranostics 10:17–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Todd H, Galea GL, Meakin LB, Delisser PJ, Lanyon LE, Windahl SH, Price JS (2015) Wnt16 is associated with age-related bone loss and estrogen withdrawal in murine bone. PLoS ONE 10:e0140260

    Article  PubMed  PubMed Central  Google Scholar 

  20. Canalis E (2013) Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9:575–583

    Article  CAS  PubMed  Google Scholar 

  21. Rawadi G (2008) Wnt signaling and potential applications in bone diseases. Curr Drug Targets 9:581–590

    Article  CAS  PubMed  Google Scholar 

  22. Sattler AM, Schoppet M, Schaefer JR, Hofbauer LC (2004) Novel aspects on RANK ligand and osteoprotegerin in osteoporosis and vascular disease. Calcif Tissue Int 74:103–106

    Article  CAS  PubMed  Google Scholar 

  23. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  CAS  PubMed  Google Scholar 

  24. Leibbrandt A, Penninger JM (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci 1143:123–150

    Article  CAS  PubMed  Google Scholar 

  25. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  CAS  PubMed  Google Scholar 

  26. Collin-Osdoby P (1994) Role of vascular endothelial cells in bone biology. J Cell Biochem 55:304–309

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Liu X, Zuo B, Zhang L (2016) The role of bone marrow microenvironment in governing the balance between osteoblastogenesis and adipogenesis. Aging Dis 7:514–525

    Article  PubMed  Google Scholar 

  28. Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou Q, Xie F, Zhou B, Wang J, Wu B, Li L, Kang Y, Dai R, Jiang Y (2019) Differentially expressed proteins identified by TMT proteomics analysis in bone marrow microenvironment of osteoporotic patients. Osteoporos Int 30:1089–1098

    Article  PubMed  Google Scholar 

  30. Miranda M, Pino AM, Fuenzalida K, Rosen CJ, Seitz G, Rodriguez JP (2016) Characterization of fatty acid composition in bone marrow fluid from postmenopausal women: modification after hip fracture. J Cell Biochem 117:2370–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pino AM, Rios S, Astudillo P, Fernandez M, Figueroa P, Seitz G, Rodriguez JP (2010) Concentration of adipogenic and proinflammatory cytokines in the bone marrow supernatant fluid of osteoporotic women. J Bone Miner Res 25:492–498

    Article  CAS  PubMed  Google Scholar 

  32. Gorzek J, Hendrickson K, Forstner J, Rixen J, Moran A, Lowe DA (2007) Estradiol and tamoxifen reverse ovariectomy-induced physical inactivity in mice. Med Sci Sports Exerc 39:248–256

    Article  CAS  PubMed  Google Scholar 

  33. Nichterwitz S, Chen G, Aguila Benitez J, Yilmaz M, Storvall H, Cao M, Sandberg R, Deng Q, Hedlund E (2016) Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nat Commun 7:12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou B, Peng K, Wang G, Chen W, Liu P, Chen F, Kang J (2020) miR-483-3p promotes the osteogenesis of human osteoblasts by targeting Dikkopf 2 (DKK2) and the Wnt signaling pathway. Int J Mol Med 46(4):1571–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Qin D, Zhang H, Zhang H, Sun T, Zhao H, Lee WH (2019) Anti-osteoporosis effects of osteoking via reducing reactive oxygen species. J Ethnopharmacol 244:112045

    Article  CAS  PubMed  Google Scholar 

  36. Tao L, Shen S, Fu S, Fang H, Wang X, Das S, Sluijter JP, Rosenzweig A, Zhou Y, Kong X, Xiao J, Li X (2015) Traditional Chinese Medication Qiliqiangxin attenuates cardiac remodeling after acute myocardial infarction in mice. Sci Rep 5:8374

    Article  PubMed  PubMed Central  Google Scholar 

  37. Martin M (2015) Docetaxel, doxorubicin and cyclophosphamide (the TAC regimen): an effective adjuvant treatment for operable breast cancer. Womens Health 2:527–537

    Google Scholar 

  38. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  39. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462

    Article  CAS  PubMed  Google Scholar 

  40. Miyazaki M, Zuk PA, Zou J, Yoon SH, Wei F, Morishita Y, Sintuu C, Wang JC (2008) Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene therapy in rat spinal fusion model. Spine (Phila Pa 1976) 33:863–869

    Article  Google Scholar 

  41. Kameda Y, Takahata M, Mikuni S, Shimizu T, Hamano H, Angata T, Hatakeyama S, Kinjo M, Iwasaki N (2015) Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis. Bone 71:217–226

    Article  CAS  PubMed  Google Scholar 

  42. Calviello G, Resci F, Serini S, Piccioni E, Toesca A, Boninsegna A, Monego G, Ranelletti FO, Palozza P (2007) Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis 28:1202–1209

    Article  CAS  PubMed  Google Scholar 

  43. Kimelman D, Xu W (2006) beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482–7491

    Article  CAS  PubMed  Google Scholar 

  44. Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5:442–447

    Article  CAS  PubMed  Google Scholar 

  45. Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, Kodama T, Yamaguchi A, Owen MJ, Takahashi S, Takayanagi H (2010) Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 120:3455–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang K, Chen Z, Gao J, Shi W, Li L, Jiang S, Hu H, Liu Z, Xu D, Wu L (2017) The key roles of GSK-3beta in regulating mitochondrial activity. Cell Physiol Biochem 44:1445–1459

    Article  CAS  PubMed  Google Scholar 

  47. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11:539–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao R (2012) Immune regulation of osteoclast function in postmenopausal osteoporosis: a critical interdisciplinary perspective. Int J Med Sci 9:825–832

    Article  PubMed  PubMed Central  Google Scholar 

  49. Panwar P, Xue L, Soe K, Srivastava K, Law S, Delaisse JM, Bromme D (2017) An ectosteric inhibitor of cathepsin K inhibits bone resorption in ovariectomized mice. J Bone Miner Res 32:2415–2430

    Article  CAS  PubMed  Google Scholar 

  50. Liu YQ, Hong ZL, Zhan LB, Chu HY, Zhang XZ, Li GH (2016) Wedelolactone enhances osteoblastogenesis by regulating Wnt/beta-catenin signaling pathway but suppresses osteoclastogenesis by NF-kappaB/c-fos/NFATc1 pathway. Sci Rep 6:32260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bidwell JP, Alvarez MB, Hood M Jr, Childress P (2013) Functional impairment of bone formation in the pathogenesis of osteoporosis: the bone marrow regenerative competence. Curr Osteoporos Rep 11:117–125

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by Innovative Research and Development project of Hunan Development and Reform Commission (2019412).

Author information

Authors and Affiliations

Authors

Contributions

Bin Zhou performed the experiments and wrote the paper. Kun Peng and Weihua Chen coordinated the study. Guoqiang Wang collected the samples and assisted with the experiments. Yijun Kang conceived the study, designed the experiments, and revised the paper. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yijun Kang.

Ethics declarations

Disclosure

Bin Zhou, Kun Peng, Guoqiang Wang, Weihua Chen, and Yijun Kang declared that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All experiments were carried out according to the Guide for the Care and Use of Laboratory Animals (National Institutes of Health, Bethesda, MD, USA) and were approved by the Ethics Committee of the Second Xiangya Hospital, Central South University. There are no human sujects in the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Peng, K., Wang, G. et al. Silencing Proteasome 26S Subunit ATPase 2 (PSMC2) Protects the Osteogenic Differentiation In Vitro and Osteogenesis In Vivo. Calcif Tissue Int 109, 44–54 (2021). https://doi.org/10.1007/s00223-021-00819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00819-2

Keywords

Navigation