Skip to main content

Advertisement

Log in

Hyperphosphatemia and Chronic Kidney Disease: A Major Daily Concern Both in Adults and in Children

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Hyperphosphatemia is common in chronic kidney disease (CKD). Often seen as the “silent killer” because of its dramatic effect on vascular calcifications, hyperphosphatemia explains, at least partly, the onset of the complex mineral and bone disorders associated with CKD (CKD–MBD), together with hypocalcemia and decreased 1-25(OH)2 vitamin D levels. The impact of CKD–MBD may be immediate with abnormalities of bone and mineral metabolism with secondary hyperparathyroidism and increased FGF23 levels, or delayed with poor growth, bone deformities, fractures, and vascular calcifications, leading to increased morbidity and mortality. The global management of CKD–MBD has been detailed in international guidelines for adults and children, however, with difficulties to obtain an agreement on the ideal PTH targets. The clinical management of hyperphosphatemia is a daily challenge for nephrologists and pediatric nephrologists, notably because of the phosphate overload in occidental diets that is mainly due to the phosphate “hidden” in food additives. The management begins with a dietary restriction of phosphate intake, and is followed by the use of calcium-based and non-calcium-based phosphate binders, and/or the intensification of dialysis. The objective of this review is to provide an overview of the pathophysiology of hyperphosphatemia in CKD, with a focus on its deleterious effects and a description of the clinical management of hyperphosphatemia in a more global setting of CKD–MBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mitsnefes MM (2012) Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol 23(4):578–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shroff R (2013) Phosphate is a vascular toxin. Pediatr Nephrol 28(4):583–593

    Article  PubMed  Google Scholar 

  3. Shroff R, Long DA, Shanahan C (2013) Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol 24(2):179–189

    Article  CAS  PubMed  Google Scholar 

  4. Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 69(11):1945–1953

    Article  CAS  PubMed  Google Scholar 

  5. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D et al (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 342(20):1478–1483

    Article  CAS  PubMed  Google Scholar 

  6. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U et al (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106(1):100–105

    Article  PubMed  Google Scholar 

  7. Cejka D, Weber M, Diarra D, Reiter T, Kainberger F, Haas M (2014) Inverse association between bone microarchitecture assessed by HR-pQCT and coronary artery calcification in patients with end-stage renal disease. Bone 64:33–38

    Article  CAS  PubMed  Google Scholar 

  8. Malluche HH, Blomquist G, Monier-Faugere M-C, Cantor TL, Davenport DL (2015) High parathyroid hormone level and osteoporosis predict progression of coronary artery calcification in patients on dialysis. J Am Soc Nephrol 26(10):2534–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ziolkowska H, Brzewski M, Roszkowska-Blaim M (2008) Determinants of the intima-media thickness in children and adolescents with chronic kidney disease. Pediatr Nephrol. 23(5):805–811

    Article  PubMed  Google Scholar 

  10. Preka E, Ranchin B, Doyon A, Vierge M, Ginhoux T, Kassai B et al (2018) The interplay between bone and vessels in pediatric CKD: lessons from a single-center study. Pediatr Nephrol. 33:1565–1575

    Article  PubMed  Google Scholar 

  11. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD–MBD). Kidney Int Supl 113:S1–130

    Google Scholar 

  12. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L et al (2017) Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD–MBD) guideline update: what’s changed and why it matters. Kidney Int 92(1):26–36

    Article  PubMed  Google Scholar 

  13. Shroff R, Wan M, Nagler EV, Bakkaloglu S, Cozzolino M, Bacchetta J et al (2017) Clinical practice recommendations for treatment with active vitamin D analogues in children with chronic kidney disease Stages 2–5 and on dialysis. Nephrol Dial Transplant 32(7):1114–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klaus G, Watson A, Edefonti A, Fischbach M, Rönnholm K, Schaefer F et al (2006) Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol 21(2):151–159

    Article  CAS  PubMed  Google Scholar 

  15. Drube J, Wan M, Bonthuis M, Wühl E, Bacchetta J, Santos F et al (2019) Clinical practice recommendations for growth hormone treatment in children with chronic kidney disease. Nat Rev Nephrol 15(9):577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ritz E, Hahn K, Ketteler M, Kuhlmann MK, Mann J (2012) Phosphate additives in food–a health risk. Dtsch Arztebl Int 109(4):49–55

    PubMed  PubMed Central  Google Scholar 

  17. Calvo MS, Uribarri J (2013) Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am J Clin Nutr 98(1):6–15

    Article  CAS  PubMed  Google Scholar 

  18. ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26(3):345–348

    Article  CAS  Google Scholar 

  19. Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H et al (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79(12):1370–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A et al (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359(6):584–592

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kurosu H, Kuro-O M (2009) The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol 299(1):72–78

    Article  CAS  PubMed  Google Scholar 

  22. Yamazaki Y, Tamada T, Kasai N, Urakawa I, Aono Y, Hasegawa H et al (2008) Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 23(9):1509–1518

    Article  CAS  PubMed  Google Scholar 

  23. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T et al (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113(4):561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M et al (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117(12):4003–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Portale AA, Wolf MS, Messinger S, Perwad F, Jüppner H, Warady BA et al (2016) Fibroblast growth factor 23 and risk of CKD progression in children. Clin J Am Soc Nephrol 11(11):1989–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wesseling-Perry K, Pereira RC, Tseng C-H, Elashoff R, Zaritsky JJ, Yadin O et al (2012) Early skeletal and biochemical alterations in pediatric chronic kidney disease. Clin J Am Soc Nephrol. 7(1):146–152

    Article  CAS  PubMed  Google Scholar 

  27. Komaba H, Goto S, Fujii H, Hamada Y, Kobayashi A, Shibuya K et al (2010) Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int 77(3):232–238

    Article  CAS  PubMed  Google Scholar 

  28. Bacchetta J, Bardet C, Prié D (2019) Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metab Clin Exp. https://doi.org/10.1016/j.metabol.2019.01.006

    Article  PubMed  Google Scholar 

  29. Faul C, Amaral AP, Oskouei B, Hu M-C, Sloan A, Isakova T et al (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121(11):4393–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olauson H, Lindberg K, Amin R, Sato T, Jia T, Goetz R et al (2013) Parathyroid-specific deletion of Klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLoS Genet 9(12):e1003975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bacchetta J, Sea JL, Chun RF, Lisse TS, Wesseling-Perry K, Gales B et al (2013) Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin D in human monocytes. J Bone Miner Res 28(1):46–55

    Article  CAS  PubMed  Google Scholar 

  32. Chonchol M, Greene T, Zhang Y, Hoofnagle AN, Cheung AK (2016) Low Vitamin D and high fibroblast growth factor 23 serum levels associate with infectious and cardiac deaths in the HEMO study. J Am Soc Nephrol 27(1):227–237

    Article  CAS  PubMed  Google Scholar 

  33. Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B et al (2014) FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med 6(6):744–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hensel N, Schön A, Konen T, Lübben V, Förthmann B, Baron O et al (2016) Fibroblast growth factor 23 signaling in hippocampal cells: impact on neuronal morphology and synaptic density. J Neurochem 137(5):756–769

    Article  CAS  PubMed  Google Scholar 

  35. Gardner J, Ashraf A, You Z, McCormick K (2011) Changes in plasma FGF23 in growth hormone deficient children during rhGH therapy. J Pediatr Endocrinol Metab 24(9–10):645–650

    CAS  PubMed  Google Scholar 

  36. Rutkowski JM, Pastor J, Sun K, Park SK, Bobulescu IA, Chen CT et al (2017) Adiponectin alters renal calcium and phosphate excretion through regulation of klotho expression. Kidney Int 91(2):324–337

    Article  CAS  PubMed  Google Scholar 

  37. Denburg MR, Kalkwarf HJ, de Boer IH, Hewison M, Shults J, Zemel BS et al (2013) Vitamin D bioavailability and catabolism in pediatric chronic kidney disease. Pediatr Nephrol 28(9):1843–1853

    Article  PubMed  PubMed Central  Google Scholar 

  38. Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S et al (2016) Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int 90(5):985–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eisenga MF, van Londen M, Leaf DE, Nolte IM, Navis G, Bakker SJL et al (2017) C-Terminal fibroblast growth factor 23, iron deficiency, and mortality in renal transplant recipients. J Am Soc Nephrol 28(12):3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolf M, Koch TA, Bregman DB (2013) Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 28(8):1793–1803

    Article  CAS  PubMed  Google Scholar 

  41. Ritter CS, Armbrecht HJ, Slatopolsky E, Brown AJ (2006) 25-Hydroxyvitamin D(3) suppresses PTH synthesis and secretion by bovine parathyroid cells. Kidney Int 70(4):654–659

    Article  CAS  PubMed  Google Scholar 

  42. Shroff R, Wan M, Gullett A, Ledermann S, Shute R, Knott C et al (2012) Ergocalciferol supplementation in children with CKD delays the onset of secondary hyperparathyroidism: a randomized trial. Clin J Am Soc Nephrol 7(2):216–223

    Article  CAS  PubMed  Google Scholar 

  43. Westerberg P-A, Sterner G, Ljunggren Ö, Isaksson E, Elvarson F, Dezfoolian H et al (2017) High doses of cholecalciferol alleviate the progression of hyperparathyroidism in patients with CKD Stages 3–4: results of a 12-week double-blind, randomized, controlled study. Nephrol Dial Transplant 33:466–471

    Article  PubMed Central  CAS  Google Scholar 

  44. Snauwaert E, Van Biesen W, Raes A, Glorieux G, Vanholder R, Vande Walle J et al (2018) A plea for more uremic toxin research in children with chronic kidney disease. Pediatr Nephrol 33(6):921–924

    Article  PubMed  Google Scholar 

  45. Kuro-o M (2010) A potential link between phosphate and aging–lessons from Klotho-deficient mice. Mech Ageing Dev 131(4):270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gutiérrez OM, Anderson C, Isakova T, Scialla J, Negrea L, Anderson AH et al (2010) Low socioeconomic status associates with higher serum phosphate irrespective of race. J Am Soc Nephrol 21(11):1953–1960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang H-Y, Crouthamel MH et al (2013) Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 83(6):1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ardeshirpour L, Cole DEC, Carpenter TO (2007) Evaluation of bone and mineral disorders. Pediatr Endocrinol Rev 5(Suppl 1):584–598

    PubMed  Google Scholar 

  49. KDOQI Work Group (2009) KDOQI Clinical practice guideline for nutrition in children with CKD: 2008 update executive summary. Am J Kidney Dis 53(3 Suppl 2):S11–104

    Google Scholar 

  50. Fouque D, Roth H, Pelletier S, London GM, Hannedouche T, Jean G et al (2013) Control of mineral metabolism and bone disease in haemodialysis patients: which optimal targets? Nephrol Dial Transplant 28(2):360–367

    Article  CAS  PubMed  Google Scholar 

  51. Rinat C, Becker-Cohen R, Nir A, Feinstein S, Shemesh D, Algur N et al (2010) A comprehensive study of cardiovascular risk factors, cardiac function and vascular disease in children with chronic renal failure. Nephrol Dial Transplant 25(3):785–793

    Article  PubMed  Google Scholar 

  52. Mizobuchi M, Finch JL, Martin DR, Slatopolsky E (2007) Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int 72(6):709–715

    Article  CAS  PubMed  Google Scholar 

  53. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15(8):2208–2218

    Article  CAS  PubMed  Google Scholar 

  54. Foley RN, Collins AJ, Herzog CA, Ishani A, Kalra PA (2009) Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol 20(2):397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dhingra R, Sullivan LM, Fox CS, Wang TJ, D’Agostino RB, Gaziano JM et al (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167(9):879–885

    Article  CAS  PubMed  Google Scholar 

  56. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D et al (2007) Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol 18(11):2996–3003

    Article  CAS  PubMed  Google Scholar 

  57. Mannstadt M, Bilezikian JP, Thakker RV, Hannan FM, Clarke BL, Rejnmark L et al (2017) Hypoparathyroidism. Nat Rev Dis Primers 3:17055

    Article  PubMed  Google Scholar 

  58. Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Usardi A et al (2018) Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol 14(8):476–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M et al (2004) Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 36(6):579–581

    Article  CAS  PubMed  Google Scholar 

  60. Claramunt-Taberner D, Bertholet-Thomas A, Carlier M-C, Dijoud F, Chotel F, Silve C et al (2018) Hyperphosphatemic tumoral calcinosis caused by FGF23 compound heterozygous mutations: what are the therapeutic options for a better control of phosphatemia? Pediatr Nephrol 33(7):1263–1267

    Article  PubMed  Google Scholar 

  61. Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME (2014) High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr 99(2):320–327

    Article  CAS  PubMed  Google Scholar 

  62. Weinman EJ, Light PD, Suki WN (2013) Gastrointestinal phosphate handling in CKD and its association with cardiovascular disease. Am J Kidney Dis 62(5):1006–1011

    Article  CAS  PubMed  Google Scholar 

  63. Khairallah P, Isakova T, Asplin J, Hamm L, Dobre M, Rahman M et al (2017) Acid Load and Phosphorus Homeostasis in CKD. Am J Kidney Dis 70(4):541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shroff R, Wan M, Nagler EV, Bakkaloglu S, Fischer D-C, Bishop N et al (2017) Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease Stages 2–5 and on dialysis. Nephrol Dial Transplant 32(7):1098–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bacchetta J, Schmitt CP, Ariceta G, Bakkaloglu SA, Groothoff J, Wan M et al (2019) Cinacalcet use in paediatric dialysis: a position statement from the European Society for Paediatric Nephrology and the Chronic Kidney Disease-Mineral and Bone Disorders Working Group of the ERA-EDTA. Nephrol Dial Transplant 35(1):47–64

    Google Scholar 

  66. Denburg MR, Tsampalieros AK, de Boer IH, Shults J, Kalkwarf HJ, Zemel BS et al (2013) Mineral metabolism and cortical volumetric bone mineral density in childhood chronic kidney disease. J Clin Endocrinol Metab 98(5):1930–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bakkaloglu SA, Wesseling-Perry K, Pereira RC, Gales B, Wang H-J, Elashoff RM et al (2010) Value of the new bone classification system in pediatric renal osteodystrophy. Clin J Am Soc Nephrol 5(10):1860–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Denburg MR, Kumar J, Jemielita T, Brooks ER, Skversky A, Portale AA et al (2016) Fracture Burden and Risk Factors in Childhood CKD: Results from the CKiD Cohort Study. J Am Soc Nephrol 27(2):543–550

    Article  CAS  PubMed  Google Scholar 

  69. Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R (2000) Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 15(11):2245–2250

    Article  CAS  PubMed  Google Scholar 

  70. Hahn D, Hodson EM, Craig JC (2015) Interventions for metabolic bone disease in children with chronic kidney disease. Cochrane Database Syst Rev 11:CD008327

    Google Scholar 

  71. Sherman RA, Ravella S, Kapoian T (2015) The phosphate content of prescription medication: a new consideration. Ther Innov Regul Sci 49(6):886–889

    Article  PubMed  Google Scholar 

  72. Hannedouche T, Fouque D, Joly D (2018) Metabolic complications in chronic kidney disease: hyperphosphatemia, hyperkalemia and anemia. Nephrol Ther 14(6):6S17–16S25

    Article  PubMed  Google Scholar 

  73. Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL et al (2011) Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol 6(2):257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Scialla JJ, Appel LJ, Wolf M, Yang W, Zhang X, Sozio SM et al (2012) Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: the chronic renal insufficiency cohort study. J Ren Nutr 22(4):379–388.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sullivan C, Sayre SS, Leon JB, Machekano R, Love TE, Porter D et al (2009) Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 301(6):629–635

    Article  CAS  PubMed  Google Scholar 

  76. Liu Z, Su G, Guo X, Wu Y, Liu X, Zou C et al (2015) Dietary interventions for mineral and bone disorder in people with chronic kidney disease. Cochrane Database Syst Rev 9:CD010350

    Google Scholar 

  77. Sullivan CM, Leon JB, Sehgal AR (2007) Phosphorus-containing food additives and the accuracy of nutrient databases: implications for renal patients. J Ren Nutr 17(5):350–354

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lindley E, Costelloe S, Bosomworth M, Fouque D, Freeman J, Keane D et al (2014) Use of a standard urine assay for measuring the phosphate content of beverages. J Ren Nutr 24(6):353–356

    Article  CAS  PubMed  Google Scholar 

  79. D’Alessandro C, Piccoli GB, Cupisti A (2015) The, “phosphorus pyramid”: a visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol 16:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Isakova T, Gutiérrez OM, Chang Y, Shah A, Tamez H, Smith K et al (2009) Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol 20(2):388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gonzalez E, Schomberg J, Amin N, Salusky IB, Zaritsky J (2010) Sevelamer carbonate increases serum bicarbonate in pediatric dialysis patients. Pediatr Nephrol 25(2):373–375

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jin C, Gao L, Li Y, Wu S, Lu X, Yang J et al (2017) Lanthanum damages learning and memory and suppresses astrocyte-neuron lactate shuttle in rat hippocampus. Exp Brain Res 235(12):3817–3832

    Article  CAS  PubMed  Google Scholar 

  83. Floege J, Covic AC, Ketteler M, Mann JFE, Rastogi A, Spinowitz B et al (2015) Long-term effects of the iron-based phosphate binder, sucroferric oxyhydroxide, in dialysis patients. Nephrol Dial Transplant 30(6):1037–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hanudel MR, Laster M, Ramos G, Gales B, Salusky IB (2018) Clinical experience with the use of ferric citrate as a phosphate binder in pediatric dialysis patients. Pediatr Nephrol 33(11):2137–2142

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kalantar-Zadeh K, Parameswaran V, Ficociello LH, Anderson L, Ofsthun NJ, Kwoh C et al (2018) Real-world scenario improvements in serum phosphorus levels and pill burden in peritoneal dialysis patients treated with sucroferric oxyhydroxide. Am J Nephrol 47(3):153–161

    Article  CAS  PubMed  Google Scholar 

  86. Ix JH, Isakova T, Larive B, Raphael KL, Raj DS, Cheung AK et al (2019) Effects of nicotinamide and lanthanum carbonate on serum phosphate and fibroblast growth factor-23 in CKD: the COMBINE Trial. J Am Soc Nephrol 30(6):1096–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Floege J (2019) Phosphate binders in chronic kidney disease: an updated narrative review of recent data. J Nephrol. https://doi.org/10.1007/s40620-019-00689-w

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kaesler N, Goettsch C, Weis D, Schurgers L, Hellmann B, Floege J et al (2019) Magnesium but not nicotinamide prevents vascular calcification in experimental uraemia. Nephrol Dial Transplant 35(1):65–73

    Google Scholar 

  89. Daugirdas JT, Finn WF, Emmett M, Chertow GM, Frequent Hemodialysis Network Trial Group (2011) The phosphate binder equivalent dose. Semin Dial 24(1):41–49

    Article  Google Scholar 

  90. Pereira RC, Jüppner H, Gales B, Salusky IB, Wesseling-Perry K (2015) Osteocytic protein expression response to doxercalciferol therapy in pediatric dialysis patients. PLoS ONE 10(3):e0120856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R et al (2015) Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation 132(1):27–39

    Article  CAS  PubMed  Google Scholar 

  92. Oliveira RB, Cancela ALE, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L et al (2010) Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD–MBD therapy? Clin J Am Soc Nephrol 5(2):286–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liabeuf S, Ryckelynck J-P, El Esper N, Ureña P, Combe C, Dussol B et al (2017) Randomized clinical trial of sevelamer carbonate on serum klotho and fibroblast growth factor 23 in CKD. Clin J Am Soc Nephrol 12(12):1930–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Iguchi A, Kazama JJ, Yamamoto S, Yoshita K, Watanabe Y, Iino N et al (2015) Administration of ferric citrate hydrate decreases circulating FGF23 levels independently of serum phosphate levels in hemodialysis patients with iron deficiency. Nephron 131(3):161–166

    Article  CAS  PubMed  Google Scholar 

  95. Ketteler M, Sprague SM, Covic AC, Rastogi A, Spinowitz B, Rakov V et al (2019) Effects of sucroferric oxyhydroxide and sevelamer carbonate on chronic kidney disease-mineral bone disorder parameters in dialysis patients. Nephrol Dial Transplant 34(7):1163–1170

    Article  CAS  PubMed  Google Scholar 

  96. Cochat P, Rumsby G (2013) Primary hyperoxaluria. N Engl J Med 369(7):649–658

    Article  CAS  PubMed  Google Scholar 

  97. Shinaberger CS, Greenland S, Kopple JD, Van Wyck D, Mehrotra R, Kovesdy CP et al (2008) Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease? Am J Clin Nutr 88(6):1511–1518

    Article  CAS  PubMed  Google Scholar 

  98. Bacchetta J (2019) Treatment of hyperphosphatemia: the dangers of high PTH levels. Pediatr Nephrol 5:493–500

    Google Scholar 

  99. Pelletier S, Fouque D (2011) Mineral and bone metabolism in dialysis: towards unified patient care? Nephrol Dial Transplant 26(1):7–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justine Bacchetta.

Ethics declarations

Conflict of interest

Justine Bacchetta, Julie Bernardor, Charlotte Garnier, Corentin Naud, and Bruno Ranchin declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacchetta, J., Bernardor, J., Garnier, C. et al. Hyperphosphatemia and Chronic Kidney Disease: A Major Daily Concern Both in Adults and in Children. Calcif Tissue Int 108, 116–127 (2021). https://doi.org/10.1007/s00223-020-00665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00665-8

Keywords

Navigation