Skip to main content

Advertisement

Log in

HNGF6A Inhibits Oxidative Stress-Induced MC3T3-E1 Cell Apoptosis and Osteoblast Phenotype Inhibition by Targeting Circ_0001843/miR-214 Pathway

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Humanin (HN), a mitochondrial derived peptide, plays cyto-protective role under various stress. In this study, we aimed to investigate the effects of HNGF6A, an analogue of HN, on osteoblast apoptosis and differentiation and the underlying mechanisms. Cell proliferation of murine osteoblastic cell line MC3TC-E1 was examined by CCK8 assay and Edu staining. Cell apoptosis was detected by Annexin V assay under H2O2 treatment. The differentiation of osteoblast was determined by Alizarin red S staining. We also tested the expression of osteoblast phenotype related protein by real-time PCR and Western blot. The interaction between Circ_0001843 and miR-214, miR-214 and TAFA5 was examined by luciferase report assay. Circ_0001843 was inhibited by siRNA and miR-214 was suppressed by miR-214 inhibitor to determine the effects of Circ_0001843 and miR-214 on cell proliferation, apoptosis, and differentiation. HNGF6A, an analogue of HN, exerted cyto-protection and osteogenesis-promotion in MC3T3-E1 cells. The expression of osteoblast phenotype related protein was significantly induced by HNGF6A. Additionally, HNGF6A treatment decreased Circ_0001843 and increased miR-214 levels, as well as inhibited the phosphorylation of p38 and JNK. We further found that Circ_0001843 directly bound with miR-214, which in turn inhibited the phosphorylation of p38 and JNK. Furthermore, both Circ_0001843 overexpression and miR-214 knockdown significantly decreased the cyto-protection and osteogenic promotion of HNGF6A. In summary, our data showed that HNGF6A protected osteoblasts from oxidative stress-induced apoptosis and osteoblast phenotype inhibition by targeting Circ_0001843/miR-214 pathway and the downstream kinases, p38 and JNK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

HN:

Humanin

MAPK:

Mitogen-activated protein kinase

JNK:

C-Jun N-terminal kinase

RT-PCR:

Reverse transcription polymerase chain reaction

CCK-8:

Cell counting Kit-8

EdU:

5-Ethynyl-2′-deoxyuridine

ALP:

Alkaline phosphatase

OCN:

Osteocalcin

BMP-2:

Bone morphogenetic protein 2

RUNX2:

Runt-related transcription factor 2

GSH:

Glutathione

ROS:

Reactive oxygen species

References

  1. Kendler D (2011) Osteoporosis: therapies now and in the future. Climacteric J Int Menopause Soc 14(5):604–605

    Google Scholar 

  2. Marie PJ, Kassem M (2011) Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol 165(1):1–10. https://doi.org/10.1530/EJE-11-0132

    Article  CAS  PubMed  Google Scholar 

  3. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287. https://doi.org/10.1016/S0140-6736(10)62349-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abrahamsen B (2010) Adverse effects of bisphosphonates. Calcif Tissue Int 86(6):421–435. https://doi.org/10.1007/s00223-010-9364-1

    Article  CAS  PubMed  Google Scholar 

  5. Pazianas M, Abrahamsen B (2011) Safety of bisphosphonates. Bone 49(1):103–110. https://doi.org/10.1016/j.bone.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  6. Hamadeh IS, Ngwa BA, Gong Y (2015) Drug induced osteonecrosis of the jaw. Cancer Treat Rev 41 (5):455–464. https://doi.org/10.1016/j.ctrv.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y, Shang H, Zhang C, Liu Y, Zhao Y, Shuang F, Zhong H, Tang J, Hou S (2014) The E3 ligase RNF185 negatively regulates osteogenic differentiation by targeting Dvl2 for degradation. Biochem Biophys Res Commun 447(3):431–436. https://doi.org/10.1016/j.bbrc.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  8. Paharkova V, Alvarez G, Nakamura H, Cohen P, Lee KW (2015) Rat Humanin is encoded and translated in mitochondria and is localized to the mitochondrial compartment where it regulates ROS production. Mol Cell Endocrinol 413:96–100. https://doi.org/10.1016/j.mce.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  9. Jung SS, Van Nostrand WE (2003) Humanin rescues human cerebrovascular smooth muscle cells from Abeta-induced toxicity. J Neurochem 84(2):266–272. https://doi.org/10.1046/j.1471-4159.2003.01524.x

    Article  CAS  PubMed  Google Scholar 

  10. Gong Z, Tas E, Muzumdar R (2014) Humanin and age-related diseases: a new link? Front Endocrinol (Lausanne) 5:210. https://doi.org/10.3389/fendo.2014.00210

    Article  Google Scholar 

  11. Muzumdar RH, Huffman DM, Atzmon G, Buettner C, Cobb LJ, Fishman S, Budagov T, Cui L, Einstein FH, Poduval A, Hwang D, Barzilai N, Cohen P (2009) Humanin: a novel central regulator of peripheral insulin action. PLoS ONE 4(7):e6334. https://doi.org/10.1371/journal.pone.0006334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oh YK, Bachar AR, Zacharias DG, Kim SG, Wan J, Cobb LJ, Lerman LO, Cohen P, Lerman A (2011) Humanin preserves endothelial function and prevents atherosclerotic plaque progression in hypercholesterolemic ApoE deficient mice. Atherosclerosis 219(1):65–73. https://doi.org/10.1016/j.atherosclerosis.2011.06.038

    Article  CAS  PubMed  Google Scholar 

  13. Widmer RJ, Flammer AJ, Herrmann J, Rodriguez-Porcel M, Wan J, Cohen P, Lerman LO, Lerman A (2013) Circulating humanin levels are associated with preserved coronary endothelial function. Am J Physiol Heart Circ Physiol 304(3):H393–397. https://doi.org/10.1152/ajpheart.00765.2012

    Article  CAS  PubMed  Google Scholar 

  14. Yen K, Lee C, Mehta H, Cohen P (2013) The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J Mol Endocrinol 50(1):R11–19. https://doi.org/10.1530/JME-12-0203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bachar AR, Scheffer L, Schroeder AS, Nakamura HK, Cobb LJ, Oh YK, Lerman LO, Pagano RE, Cohen P, Lerman A (2010) Humanin is expressed in human vascular walls and has a cytoprotective effect against oxidized LDL-induced oxidative stress. Cardiovasc Res 88(2):360–366. https://doi.org/10.1093/cvr/cvq191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zaman F, Zhao Y, Celvin B, Mehta HH, Wan J, Chrysis D, Ohlsson C, Fadeel B, Cohen P, Savendahl L (2019) Humanin is a novel regulator of Hedgehog signaling and prevents glucocorticoid-induced bone growth impairment. FASEB J 33(4):4962–4974. https://doi.org/10.1096/fj.201801741R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8 (42):73271–73281. https://doi.org/10.18632/oncotarget.19154

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lu XZ, Yang ZH, Zhang HJ, Zhu LL, Mao XL, Yuan Y (2017) MiR-214 protects MC3T3-E1 osteoblasts against H2O2-induced apoptosis by suppressing oxidative stress and targeting ATF4. Eur Rev Med Pharmacol Sci 21(21):4762–4770

    PubMed  Google Scholar 

  19. Liu J, Li Y, Luo M, Yuan Z, Liu J (2017) MicroRNA-214 inhibits the osteogenic differentiation of human osteoblasts through the direct regulation of baculoviral IAP repeat-containing 7. Exp Cell Res 351(2):157–162. https://doi.org/10.1016/j.yexcr.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  20. Tom Tang Y, Emtage P, Funk WD, Hu T, Arterburn M, Park EE, Rupp F (2004) TAFA: a novel secreted family with conserved cysteine residues and restricted expression in the brain. Genomics 83(4):727–734. https://doi.org/10.1016/j.ygeno.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  21. Paulsen SJ, Christensen MT, Vrang N, Larsen LK (2008) The putative neuropeptide TAFA5 is expressed in the hypothalamic paraventricular nucleus and is regulated by dehydration. Brain Res 1199:1–9. https://doi.org/10.1016/j.brainres.2007.12.074

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Chen D, Zhang Y, Wang P, Zheng C, Zhang S, Yu B, Zhang L, Zhao G, Ma B, Cai Z, Xie N, Huang S, Liu Z, Mo X, Guan Y, Wang X, Fu Y, Ma D, Wang Y, Kong W (2018) Novel adipokine, FAM19A5, inhibits neointima formation after injury through sphingosine-1-phosphate receptor 2. Circulation 138(1):48–63. https://doi.org/10.1161/CIRCULATIONAHA.117.032398

    Article  CAS  PubMed  Google Scholar 

  23. Park MY, Kim HS, Lee M, Park B, Lee HY, Cho EB, Seong JY, Bae YS (2017) FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2. Sci Rep 7(1):15575. https://doi.org/10.1038/s41598-017-15586-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moriishi T, Maruyama Z, Fukuyama R, Ito M, Miyazaki T, Kitaura H, Ohnishi H, Furuichi T, Kawai Y, Masuyama R, Komori H, Takada K, Kawaguchi H, Komori T (2011) Overexpression of Bcl2 in osteoblasts inhibits osteoblast differentiation and induces osteocyte apoptosis. PLoS ONE 6(11):e27487. https://doi.org/10.1371/journal.pone.0027487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu F, Zhang WL, Meng HZ, Cai ZY, Yang MW (2017) Regulation of DMT1 on autophagy and apoptosis in osteoblast. Int J Med Sci 14(3):275–283. https://doi.org/10.7150/ijms.17860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT (2017) Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab 14 (2):209–216. https://doi.org/10.11138/ccmbm/2017.14.1.209

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang CX, Lv B, Wang Y (2015) Protein phosphatase 2A mediates oxidative stress induced apoptosis in osteoblasts. Mediat Inflamm 2015:804260. https://doi.org/10.1155/2015/804260

    Article  CAS  Google Scholar 

  28. Xiu D, Wang Z, Cui L, Jiang J, Yang H, Liu G (2018) Sumoylation of SMAD 4 ameliorates the oxidative stress-induced apoptosis in osteoblasts. Cytokine 102:173–180. https://doi.org/10.1016/j.cyto.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  29. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772. https://doi.org/10.2147/CIA.S158513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Callaway DA, Jiang JX (2015) Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33(4):359–370. https://doi.org/10.1007/s00774-015-0656-4

    Article  CAS  PubMed  Google Scholar 

  31. Schroder K (2019) NADPH oxidases in bone homeostasis and osteoporosis. Free Radic Biol Med 132:67–72. https://doi.org/10.1016/j.freeradbiomed.2018.08.036

    Article  CAS  PubMed  Google Scholar 

  32. Arakaki N, Yamashita A, Niimi S, Yamazaki T (2013) Involvement of reactive oxygen species in osteoblastic differentiation of MC3T3-E1 cells accompanied by mitochondrial morphological dynamics. Biomed Res 34(3):161–166. https://doi.org/10.2220/biomedres.34.161

    Article  CAS  PubMed  Google Scholar 

  33. Wu YW, Chen SC, Lai WF, Chen YC, Tsai YH (2013) Screening of flavonoids for effective osteoclastogenesis suppression. Anal Biochem 433(1):48–55. https://doi.org/10.1016/j.ab.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  34. Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y (2016) Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med Sci Monit 22:226–233. https://doi.org/10.12659/msm.897044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7(6):683–692. https://doi.org/10.1002/jbmr.5650070613

    Article  CAS  PubMed  Google Scholar 

  36. Marleau S, Mellal K, Huynh DN, Ong H (2014) Potential peptides in atherosclerosis therapy. Front Horm Res 43:93–106. https://doi.org/10.1159/000360568

    Article  PubMed  Google Scholar 

  37. Lee C, Yen K, Cohen P (2013) Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab 24(5):222–228. https://doi.org/10.1016/j.tem.2013.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao M, Liu Y, Chen Y, Yin C, Chen JJ, Liu S (2016) miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2. Free Radic Biol Med 92:39–49. https://doi.org/10.1016/j.freeradbiomed.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  39. Lv G, Shao S, Dong H, Bian X, Yang X, Dong S (2014) MicroRNA-214 protects cardiac myocytes against H2O2-induced injury. J Cell Biochem 115(1):93–101. https://doi.org/10.1002/jcb.24636

    Article  CAS  PubMed  Google Scholar 

  40. Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12(3):343–353. https://doi.org/10.1080/15476286.2015.1017205

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, Cao H, Wu H, Song J, Pan X, Sun Q, Ling S, Li Y, Zhu M, Zhang P, Peng S, Xie X, Tang T, Hong A, Bian Z, Bai Y, Lu A, Li Y, He F, Zhang G, Li Y (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19(1):93–100. https://doi.org/10.1038/nm.3026

    Article  CAS  PubMed  Google Scholar 

  42. Guo Y, Li L, Gao J, Chen X, Sang Q (2017) miR-214 suppresses the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and these effects are mediated through the inhibition of the JNK and p38 pathways. Int J Mol Med 39(1):71–80. https://doi.org/10.3892/ijmm.2016.2826

    Article  CAS  PubMed  Google Scholar 

  43. Rodriguez-Carballo E, Gamez B, Ventura F (2016) p38 MAPK signaling in osteoblast differentiation. Front Cell Dev Biol 4:40. https://doi.org/10.3389/fcell.2016.00040

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu H, Liu Y, Viggeswarapu M, Zheng Z, Titus L, Boden SD (2011) Activation of c-Jun NH(2)-terminal kinase 1 increases cellular responsiveness to BMP-2 and decreases binding of inhibitory Smad6 to the type 1 BMP receptor. J Bone Miner Res 26(5):1122–1132. https://doi.org/10.1002/jbmr.296

    Article  CAS  PubMed  Google Scholar 

  45. Xu ZS, Wang XY, Xiao DM, Hu LF, Lu M, Wu ZY, Bian JS (2011) Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic Biol Med 50(10):1314–1323. https://doi.org/10.1016/j.freeradbiomed.2011.02.016

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Fernandez LF, Losada A, Alcaide V, Alvarez AM, Cuadrado A, Gonzalez L, Nakayama K, Nakayama KI, Fernandez-Sousa JM, Munoz A, Sanchez-Puelles JM (2002) Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta. Oncogene 21(49):7533–7544. https://doi.org/10.1038/sj.onc.1205972

    Article  CAS  PubMed  Google Scholar 

  47. Liang D, Yang M, Guo B, Cao J, Yang L, Guo X, Li Y, Gao Z (2012) Zinc inhibits H(2)O(2)-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res 148(3):420–429. https://doi.org/10.1007/s12011-012-9387-8

    Article  CAS  PubMed  Google Scholar 

  48. Kwon HS, Johnson TV, Tomarev SI (2013) Myocilin stimulates osteogenic differentiation of mesenchymal stem cells through mitogen-activated protein kinase signaling. J Biol Chem 288(23):16882–16894. https://doi.org/10.1074/jbc.M112.422972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 81400849), The Natural Science Foundation of Guangdong Province (China, No. 2014A030310490), The Science and Technology Planning Project of Guangdong Province (China, No. 2017A020215189), Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Disease, Hunan Provincial Natural Science Foundation (China, No. 2017JJ2154), Scientific Research Project of Hunan Health Commission Grant (China, No. B2019067), International Training Plan for Outstanding Young Scientific Research Talents in Universities of Guangdong Province and The Science and Technology Planning Project of Tianhe District (Guangdong, China, No. 2013kw004).

Author information

Authors and Affiliations

Authors

Contributions

Study design/planning: XZ; Data collection/entry: HH, YC, LY and JZ; Data analysis/statistics: ZZ, HH, YC, QZ, JZ and DP; Data interpretation: XZ, ZZ, BC, BC, JL, DC and JS; Preparation of manuscript: XZ; Literature analysis/search: XZ, ZZ, BC, YC, QZ, LY, JL, DP, DC and JS; Manuscript revise: XZ, CZ and GD; Funds collection: XZ, LY and DC. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jie Shen, Gustavo Duque or Daozhang Cai.

Ethics declarations

Conflict of interest

Xiao Zhu, Ziping Zhao, Canjun Zeng, Bo Chen, Haifeng Huang, Youming Chen, Quan Zhou, Li Yang, Jicheng Lv, Jing Zhang, Daoyan Pan, Jie Shen, Gustavo Duque and Daozhang Cai declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

223_2020_660_MOESM1_ESM.tif

Supplementary file1 (TIF 4930 kb) Supplementary figure 1. Effects of HNGF6A and Circ_0001843 on oxidation in MC3T3-E1 cells. MC3T3-E1 cells were transfected with Circ_0001843 and exposed to H2O2 (400 μM) for 4 h. Then the cells were exposed to control or HNGF6A for 3 days and collected to determine the levels of GSH (A) and ROS (B). *, p<0.05, **, p<0.01.

223_2020_660_MOESM2_ESM.tif

Supplementary file2 (TIF 915 kb) Supplementary figure 2. Effects of miR-214, p38 and JNK on the cyto-protection of HNGF6A. MC3T3-E1 cells were transfected with miR-214 and exposed to H2O2 (400 μM) for 4 h. Cells were exposed to HNGF6A alone or in combination with SB203580 (10 μΜ) or SP600125 (10 μΜ). After treatment, the cells were collected to determine the expression of TAFA5 by RT-PCR (A) and western blot (B). *p<0.05, **p<0.01 as compared with the parent MC3T3-E1 cells treated with NC or control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhao, Z., Zeng, C. et al. HNGF6A Inhibits Oxidative Stress-Induced MC3T3-E1 Cell Apoptosis and Osteoblast Phenotype Inhibition by Targeting Circ_0001843/miR-214 Pathway. Calcif Tissue Int 106, 518–532 (2020). https://doi.org/10.1007/s00223-020-00660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00660-z

Keywords

Navigation