Skip to main content
Log in

Cortical Bone Histomorphometry in Male Femoral Neck: The Investigation of Age-Association and Regional Differences

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Low bone volume and changes in bone quality or microarchitecture may predispose individuals to fragility fractures. As the dominant component of the human skeleton, cortical bone plays a key role in protecting bones from fracture. However, histological investigations of the underlying structural changes, which might predispose to fracture, have been largely limited to the cancellous bone. The aim of this study was to investigate the age-association and regional differences of histomorphometric properties in the femoral neck cortical bone. Undecalcified histological sections of the femoral neck (n = 20, aged 18–82 years, males) were cut (15 μm) and stained using modified Masson-Goldner stain. Complete femoral neck images were scanned, and cortical bone boundaries were defined using our previously established method. Cortical bone histomorphometry was performed with low (×50) and high magnification (×100). Most parameters related to cortical width (Mean Ct.Wi, Inferior Ct.Wi, Superior Ct.Wi) were negatively associated with age both before and after adjustment for height. The inferior cortex was the thickest (P < 0.001) and the superior cortex was the thinnest (P < 0.008) of all cortical regions. Both osteonal size and pores area were negatively associated with age. Osteonal area and number were higher in the antero-inferior area (P < 0.002) and infero-posterior area (P = 0.002) compared to the postero-superior area. The Haversian canal area was higher in the infero-posterior area compared to the postero-superior area (P = 0.002). Moreover, porosity was higher in the antero-superior area (P < 0.002), supero-anterior area (P < 0.002) and supero-posterior area (P < 0.002) compared to the infero-anterior area. Eroded endocortical perimeter (E.Pm/Ec.Pm) correlated positively with superior cortical width. This study describes the changes in cortical bone during ageing in healthy males. Further studies are needed to investigate whether these changes explain the increased susceptibility to femoral neck fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zebaze RM, Ghasem-Zadeh A, Bohte A et al (2010) Intracortical remodelling and porosity in the distal radius and postmortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  2. Rantalainen T, Nikander R, Heinonen A, Daly RM, Sievanen H (2011) An open source approach for regional cortical bone mineral density analysis. J Musculoskelet Neuronal Interact 11:243–248

    CAS  PubMed  Google Scholar 

  3. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence an economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475

    Article  PubMed  Google Scholar 

  4. Barrett-Connor E (1995) The economic and human costs of osteoporotic fracture. Am J Med 98(Suppl 2A):3S–8S

    Article  CAS  PubMed  Google Scholar 

  5. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kaptoge S, Beck TJ, Reeve J et al (2008) Prediction of Incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY (2013) Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013:213–234

    Google Scholar 

  8. Manske SL, Liu-Ambrose T, Cooper DM et al (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20:445–453

    Article  CAS  PubMed  Google Scholar 

  9. Jordan GR, Loveridge N, Bell KL, Power J, Rushton N, Reeve J (2000) Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone 26:305–313

    Article  CAS  PubMed  Google Scholar 

  10. Bell KL, Loveridge N, Reeve J et al (2001) Super-osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender. Anat Rec 264:378–386

    Article  CAS  PubMed  Google Scholar 

  11. Koivumäki JE, Thevenot J, Pulkkinen P et al (2012) Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur. Bone 51:737–740

    Article  PubMed  Google Scholar 

  12. Jee WSS (2001) Integrated bone tissue physiology: anatomy and physiology. Cowin SC, editor. CRC Press, New York

  13. Bousson V, Le Bras A, Roqueplan F et al (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 17:855–864

    Article  CAS  PubMed  Google Scholar 

  14. Turner CH (2005) The biomechanics of hip fracture. Lancet 366:98

    Article  PubMed  Google Scholar 

  15. Bouxsein ML, Fajardo RJ (2005) Cortical stability of the femoral neck and hip fracture risk. Lancet 366:1523–1524

    Article  PubMed  Google Scholar 

  16. Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261

    Article  CAS  PubMed  Google Scholar 

  17. Bousson V, Peyrin F, Bergot C et al (2004) Cortical bone in the human femoral neck: three-dimensional appearance and porosity using synchrotron radiation. J Bone Miner Res 19:794–801

    Article  PubMed  Google Scholar 

  18. Blain H, Chavassieux P, Portero-Muzy N et al (2008) Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone 43:862–868

    Article  CAS  PubMed  Google Scholar 

  19. Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  CAS  PubMed  Google Scholar 

  20. Koivumäki JE, Thevenot J, Pulkkinen P et al (2012) Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50:824–829

    Article  PubMed  Google Scholar 

  21. Raum K (2011) Bone quantitative ultrasound. Springer Dordrecht Heidelberg, London

    Google Scholar 

  22. Rho JY, Zioupos P, Currey JD, Pharr GM (2002) Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nanoindentation. J Biomech 35:189–198

    Article  CAS  PubMed  Google Scholar 

  23. Melsen F, Melsen B, Mosekilde L et al (1978) Histomorphometric analysis of normal bone from the iliac crest. Acta Pathol Microbiol Scand. 86:70–81

    CAS  Google Scholar 

  24. Vedi S, Kaptoge S, Compston JE (2011) Age-related changes in iliac crest cortical width and porosity: a histomorphometric study. J Anat 218:510–516

    Article  PubMed Central  PubMed  Google Scholar 

  25. Brockstedt H, Kassem M, Eriksen EF et al (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691

    Article  CAS  PubMed  Google Scholar 

  26. Cohen-Solal M, Shih M-S, Lundy M, Parfitt A (1991) A new method for measuring cancellous bone erosion depth: application to the cellular mechanisms of bone loss in postmenopausal osteoporosis. J Bone Miner Res 6:1331–1338

    Article  CAS  PubMed  Google Scholar 

  27. Tsangari H, Findlay DM, Fazzalari NL (2007) Structural and remodeling indices in the cancellous bone of the proximal femur across adulthood. Bone 40:211–217

    Article  PubMed  Google Scholar 

  28. Ma YL, Zeng QQ, Chiang AY et al (2014) Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 59:139–147

    Article  CAS  PubMed  Google Scholar 

  29. Ottewell PD, Wang N, Brown HK et al (2014) Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 20:2922–2932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bobinac D, Marinovic M, Bazdulj E et al (2013) Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis. Osteoarthr Cartil 21:1724–1730

    Article  CAS  PubMed  Google Scholar 

  31. Malo MK, Rohrbach D, Isaksson H et al (2013) Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 53(2):451–458

    Article  CAS  PubMed  Google Scholar 

  32. Tong XY, Malo M, Tamminen IS et al (2015) Development of new criteria for cortical bone histomorphometry in femoral neck: intra- and inter-observer reproducibility. J Bone Miner Metab 33(1):109–118

  33. Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28(1):2–17

    Article  PubMed Central  PubMed  Google Scholar 

  34. Thomas CD, Mayhew PM, Power J et al (2009) Femoral neck trabecular bone: loss with aging and role in preventing fracture. J Bone Miner Res 24:1808–1818

    Article  PubMed  Google Scholar 

  35. Poole KE, Mayhew PM, Rose CM et al (2010) Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res 25:482–491

    Article  PubMed  Google Scholar 

  36. Mayhew PM, Thomas CD, Clement JG et al (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135

    Article  PubMed  Google Scholar 

  37. Johannesdottir F, Poole KE, Reeve J et al (2011) Distribution of Cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the Ages-Reykjavik study. Bone 48:1268–1276

    Article  PubMed Central  PubMed  Google Scholar 

  38. Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E (2013) A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone 54:8–20

    Article  CAS  PubMed  Google Scholar 

  39. Evans FG (1976) Mechanical properties and histology of cortical bone from younger and older men. Anat Rec 185:1–12

    Article  CAS  PubMed  Google Scholar 

  40. Zagba-Mongalma G, Goret-Nicaise M, Diana A (1988) Age changes in human bone: a microradiographic and histological study of subperiosteal and periosteal calcifications. Gerontology 34:265–276

    Google Scholar 

  41. Riggs BL, Melton LJ, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  42. Power J, Loveridge N, Lyon A et al (2003) Bone remodeling at the endocortical surface of the human femoral neck: a mechanism for regional cortical thinning in cases of hip fracture. J Bone Miner Res 18:1775–1780

    Article  CAS  PubMed  Google Scholar 

  43. Power J, Doube M, van Bezooijen RL, Loveridge N, Reeve J (2012) Osteocyte recruitment declines as the osteon fills in: interacting effects of osteocytic sclerostin and previous hip fracture on the size of cortical canals in the femoral neck. Bone 50:1107–1114

    Article  PubMed  Google Scholar 

  44. Nicks KM, Amin S, Melton LJ 3rd et al (2013) Three-dimensional structural analysis of the proximal femur in an age stratified sample of women. Bone 55:179–188

    Article  PubMed Central  PubMed  Google Scholar 

  45. Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856–1863

    Article  PubMed  Google Scholar 

  46. Szulc P, Delmas PD (2007) Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective minos study. Osteoporos Int. 18:495–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Cullinane DM, Einhorn TA (2002) Principles of bone biology. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Biomechanics of bone. Academic Press, San Diego

    Chapter  Google Scholar 

  48. Holzer G, von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24:468–474

    Article  PubMed  Google Scholar 

  49. Kaptoge S, Dalzell N, Loveridge N et al (2003) Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone 32:561–570

    Article  PubMed  Google Scholar 

  50. Carpenter RD, Sigurdsson S, Zhao S et al (2011) Effects of age and sex on the strength and cortical thickness of the femoral neck. Bone 48:741–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Backman S (1957) The proximal end of the femur: investigations with special reference to the etiology of femoral neck fractures; anatomical studies; roentgen projections; theoretical stress calculations; experimental production of fractures. Acta Radiol 146(Suppl):1–166

  52. Hammer A (2010) The structure of the femoral neck: a physical dissection with emphasis on the internal trabecular system. Ann Anat. 192:168–177

    Article  PubMed  Google Scholar 

  53. Johannesdottir F, Aspelund T, Reeve J et al (2013) Similarities and differences between sexes in regional loss of cortical and trabecular bone in the mid-femoral neck: the AGES-Reykjavik longitudinal study. J Bone Miner Res 28:2165–2176

    Article  PubMed Central  PubMed  Google Scholar 

  54. Dong XN, Guo XE (2000) Is the cement line a weak interface? Proceedings of the 46th Annual Meeting of the Orthopaedic Research Society, Orlando, FL

  55. Dong XN, Guo XE (2001) Extracting intrinsic debonding strength of cement lines from osteon pushout experiments. In: Proceedings of the 47th Annual Meeting of the Orthopaedic Research Society, San Francisco

  56. Pfeiffer S, Crowder C, Harrington L, Brown M (2006) Secondary osteon and haversian canal dimensions as behavioral indicators. Am J Phys Anthropol 131:460–468

    Article  PubMed  Google Scholar 

  57. Busse B, Hahn M, Schinke T et al (2010) Reorganization of the femoral cortex due to age-, sex-, and endoprosthetic-related effects emphasized by osteonal dimensions and remodeling. J Biomed Mater Res A. 92:1440–1451

    PubMed  Google Scholar 

  58. Bell KL, Loveridge N, Jordan GR et al (2000) A novel mechanism for induction of increased cortical porosity in cases of intracapsular hip fracture. Bone 27:297–304

    Article  CAS  PubMed  Google Scholar 

  59. Mori S, Burr DB (1993) Increased intracortical remodeling after fatigue damage. Bone 14:103–109

    Article  CAS  PubMed  Google Scholar 

  60. Jordan G, Loveridge N, Power J, Bell KL, Reeve J (1998) Clustering of cortical remodelling: a mechanism for generating focal weakness in hip fracture. American Society for Bone and Mineral Research and International Bone and Mineral Society (ASBMR-IBMS) second joint meeting

  61. Bell KL, Loveridge N, Power J et al (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64

    Article  CAS  PubMed  Google Scholar 

  62. Cooper DM, Thomas CD, Clement JG et al (2007) Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 40:957–965

    Article  PubMed  Google Scholar 

  63. Schnitzler CM, Mesquita JM (2013) Cortical porosity in children is determined by age-dependent osteonal morphology. Bone 55:476–486

    Article  PubMed  Google Scholar 

  64. Chappard C, Bensalah S, Olivier C et al (2013) 3D characterization of pores in the cortical bone of human femur in the elderly at different locations as determined by synchrotron micro-computed tomography images. Osteoporos Int 24:1023–1033

    Article  CAS  PubMed  Google Scholar 

  65. Martin RB, Pickett JC, Zinaich S (1980) Studies of skeletal remodeling in aging men. Clin Orthop 149:268–282

    PubMed  Google Scholar 

  66. Thomas CD, Feik SA, Clement JG (2006) Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone. J Anat 209:219–230

    Article  PubMed Central  PubMed  Google Scholar 

  67. Rohde K, Rohrbach D, Gluer CC et al (2014) Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 61:302–313

    Article  PubMed  Google Scholar 

  68. Yeni YN, Norman TL (2000) Fracture toughness of human femoral neck: effect of microstructure, composition, and age. Bone 26:499–504

    Article  CAS  PubMed  Google Scholar 

  69. Bell KL, Loveridge N, Power J et al (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ms. Ritva Sormunen and Mr. Arto Koistinen for their assistance in sample preparation. We would also like to acknowledge the financial support from the China Scholarship Council (CSC), Sigrid Juselius Foundation and the Strategic Funding of the University of Eastern Finland.

Conflict of interest

Dr. Tong Xiaoyu, Dr. Inari Burton, Dr. Hanna Isaksson, Dr. Jukka Jurvelin and Dr. Heikki Kröger have no conflict of interest.

Human and Animal Rights and Informed Consent

Our research was performed with prior informed consent from each participant or their near relatives. Ethical approval for collection of samples was granted by the National Authority for Medicolegal Affairs (Permission Number: 5783/04/044/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Burton, I.S., Isaksson, H. et al. Cortical Bone Histomorphometry in Male Femoral Neck: The Investigation of Age-Association and Regional Differences. Calcif Tissue Int 96, 295–306 (2015). https://doi.org/10.1007/s00223-015-9957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-9957-9

Keywords

Navigation