Skip to main content
Log in

Fetal and Neonatal Exposure to the Endocrine Disruptor, Methoxychlor, Reduces Lean Body Mass and Bone Mineral Density and Increases Cortical Porosity

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Endogenous estrogen has beneficial effects on mature bone and negatively affects the developing skeleton, whereas the effect of environmental estrogens is not known. Methoxychlor (MXC) is a synthetic estrogen known as a persistent organochlorine and used as a pesticide. Methoxychlor and its metabolites display estrogenic, anti-estrogenic and anti-androgenic activity and may therefore influence bone. Fifty-eight male fetal and neonatal rats were exposed to either: a negative control (DMSO), 0.020, 100 mg/kg MXC, or 1 mg/kg β-estradiol-3-benzoate (EB; positive control). Rats were treated daily for 11 days, from embryonic day 19 to postnatal day (PND) 7 or for 4 days during the postnatal period (PND 0–7). All rats were analyzed at PND-84. Total body, femur, spine, and tibia areal bone mineral density (BMD) and content (BMC), lean body mass (LBM) and fat were measured by dual energy X-ray absorptiometry. Bone geometry and volumetric (v) BMD were measured using micro-computed tomography and biomechanical properties using three-point bending were assessed. Rats exposed to EB or MXC (at either the high and/or low dose), independent of exposure interval showed lower body weight, LBM, tibia and femur BMD and length, and total body BMD and BMC than DMSO control group (p ≤ 0.05). Methoxychlor and EB exposure increased cortical porosity compared to DMSO controls. Trabecular vBMD, number and separation, and cortical polar moment of inertia and cross-sectional area were lower due to EB exposure compared to control (p < 0.05). Early MXC exposure compromises cortical porosity and bone size at maturity, and could ultimately increase the risk of fracture with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, Iguchi T, Juul A, McLachlan JA, Schwartz J, Skakkebaek N, Soto AM, Swan S, Walker C, Woodruff TK, Woodruff TJ, Giudice LC, Guillette LJ Jr (2008) Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 90:911–940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30:293–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bergman A, Heindel JJ, Kasten T, Kidd KA, Jobling S, Neira M, Zoeller RT, Becher G, Bjerregaard P, Bornman R, Brandt I, Kortenkamp A, Muir D, Drisse MN, Ochieng R, Skakkebaek NE, Bylehn AS, Iguchi T, Toppari J, Woodruff TJ (2013) The impact of endocrine disruption: a consensus statement on the state of the science. Environ Health Perspect 121:a104–a106

    Article  PubMed Central  PubMed  Google Scholar 

  4. Agency for Toxic Substances and Disease Registry (ATSDR) (2002) Toxicological profile for methoxychlor. U.S. Department of Health and Human Services, Public Health, Atlanta

    Google Scholar 

  5. Giado KW, Manes SC, McDonnel DP, Dehal SS, Kupfer D, Safe S (2000) Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure–activity studies. Mol Pharmocol 58:852–858

    Google Scholar 

  6. Zama AM, Uzumcu M (2009) Fetal and neonatal exposure to an endocrine disruptor methoxychlor causes epigenetic alterations in adult avarian genes. Endocrinology 150:4681–4691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Armenti AE (2007) Methoxychlor exposure during fetal and neonatal periods of development affects adult ovarian function and female fertility in rats. Thesis, Rutgers University

  8. Armenti AE, Zama AM, Passantino L, Uzumcu M (2008) Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian: folliculogenesis and gene expression in adult rats. Toxicol Appl Pharmacol 233:286–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Murono EP, Derk RC, Akgul Y (2005) In vivo exposure of young adult male rats to methoxychlor reduces serum testosterone levels and ex vivo Leydig cell testosterone formation and cholesterol side-chain cleavage activity. Reprod Toxicol 21:148–153

    Article  PubMed  Google Scholar 

  10. Zachow R, Uzumcu M (2006) The methoxychlor metabolite, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits steroidogenesis in rat ovarian granulosa cells in vitro. Reprod Toxicol 22:659–665

    Article  CAS  PubMed  Google Scholar 

  11. Basavarajappa MS, Craig ZR, Hernandez-Ochoa I, Paulose T, Leslie TC, Flaws JA (2011) Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in vitro. Toxicol Appl Pharmacol 253:161–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Manikkam M, Haque MM, Guerrero-Bosagna C, Nilsson EE, Skinner MK (2014) Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLoS One 9:e102091

    Article  PubMed Central  PubMed  Google Scholar 

  13. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  CAS  PubMed  Google Scholar 

  14. Hotchkiss CE, Weis C, Blaydes B, Newbold R, Delclos KB (2008) Multigenerational exposure to ethinyl estradiol affects bone geometry, but not bone mineral density in rats. Bone 43:110–118

    Article  CAS  PubMed  Google Scholar 

  15. Márquez Hernández RA, Ohtani J, Fujita T, Sunagawa H, Kawata T, Kaku M, Motokawa M, Tanne K (2011) Sex hormones receptors play a crucial role in the control of femoral and mandibular growth in newborn mice. Eur J Orthod 33:564–569

    Article  PubMed  Google Scholar 

  16. Boettger-Tong H, Murthy L, Chiappetta C, Kirkland JL, Goodwin B, Adlercreutz H, Stancel GM, Makela S (1998) A case of a laboratory animal feed with high estrogenic activity and its impact on vivo responses to exogenously administered estrogens. Environ Health Perspect 106:369–373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Xue N, Xu X, Jin Z (2005) Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir. Chemosphere 61:1594–1606

    Article  CAS  PubMed  Google Scholar 

  18. Bempah CK, Donkor AK (2011) Pesticide residues in fruits at the market level in Accra Metropolis, Ghana, a preliminary study. Environ Monit Assess 175:551–561

    Article  CAS  PubMed  Google Scholar 

  19. Oh CH (2009) Monitoring of residual pesticides in herbal drug materials of Korea and China. Bull Environ Contam Toxicol 8:639–643

    Article  Google Scholar 

  20. Gray LE Jr, Ostby J, Ferrell J, Rehnberg G, Linder R, Cooper R, Goldman J, Slott V, Laskey J (1989) A dose–response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundam Appl Toxicol 12:92–108

    Article  CAS  PubMed  Google Scholar 

  21. Chapin RE, Harris MW, Davis BJ, Ward SM, Wilson RE, Mauney MA, Lockhart AC, Smialowicz RJ, Moser VC, Burka LT, Collins BJ (1997) The effects of perinatal/juvenile methoxychlor exposure on adult rat nervous, immune, and reproductive system function. Fundam Appl Toxicol 40:138–157

    Article  CAS  PubMed  Google Scholar 

  22. Uzumcu M, Kuhn PE, Marano JE, Armenti AE, Passantino L (2006) Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary. J Endocrinol 191:549–558

    Article  CAS  PubMed  Google Scholar 

  23. Deroo BJ, Korach S (2006) Estrogen receptors and human disease. J Clin Invest. 116:561–570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Golub MS, Hogrefe CE, Germann SL, Jerome CP (2004) Endocrine disruption in adolescence: immunologic, hematologic, and bone effects in monkeys. Toxicol Sci 82:598–607

    Article  CAS  PubMed  Google Scholar 

  25. Migliaccio S, Newbold RR, McLachlan JA, Korach KS (1995) Alterations in estrogen levels during development affects the skeleton: use of an animal model. Environ Health Perspect 7:95–97

    Article  Google Scholar 

  26. Migliaccio S, Newbold RR, Bullock BC, Jefferson WJ, Sutton FG Jr, McLachlan JA, Korach KS (1996) Alterations of maternal estrogen levels during gestation affect the skeleton of female offspring. Endocrinology 137:2118–2125

    CAS  PubMed  Google Scholar 

  27. Pelch KE, Carleton SM, Phillips CL, Nagel SC (2012) Developmental exposure to xenoestrogens at low doses alters femur length and tensile strength in adult mice. Biol Reprod 86:69

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kaludjerovic J, Ward WE (2008) Diethylstilbesterol has gender-specific effects on weight gain and bone development in mice. J Toxicol Environ Health A 71:1032–1042

    Article  CAS  PubMed  Google Scholar 

  29. Rowas SA, Haddad R, Gawri R, Al Ma’awi AA, Chalifour LE, Antoniou J, Mwale F (2012) Effect of in utero exposure to diethylstilbestrol on lumbar and femoral bone, articular cartilage, and the intervertebral disc in male and female adult mice progeny with and without swimming exercise. Arthritis Res Ther 14:R17

    Article  PubMed Central  PubMed  Google Scholar 

  30. Gaido KW, Leonard LS, Maness SC, Hall JM, McDonnell DP, Saville B, Safe S (1999) Differential interaction of the methoxychlor metabolite 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane with estrogen receptors alpha and beta. Endocrinology 140:5746–5753

    CAS  PubMed  Google Scholar 

  31. Gore AC, Walker DM, Zama AM, Armenti AE, Uzumcu M (2011) Early life exposure to endocrine-disrupting chemicals causes lifelong molecular reprogramming of the hypothalamus and premature reproductive aging. Mol Endocrinol 25:2157–2168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dodge JA, Glasebrook AL, Magee DE, Phillips DL, Sato M, Short LL, Bryant HU (1996) Environmental estrogens: effects on cholesterol lowering and bone in the ovariectomized rat. J Steroid Biochem Mol Biol 59:155–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. LC Pop for reviewing this manuscript, Dr. Schlussel for her statistical advice, AE Armenti for assisting with the in vivo experimental procedures in this study, and E Bandali for her assistance with the bone images. This study is supported by NJAES (0153866) to SAS and NIH Grant (ES013854) to MU.

Conflict of interest

Heather S. Fagnant, Mehmet Uzumcu, Patricia Buckendahl, Michael G. Dunn, Peter Shupper and Sue A. Shapses declare no conflict of interest.

Human and Animal Rights and Informed Consent

The procedures in this study were approved and conducted in accordance with the guidelines of the Rutgers University Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue A. Shapses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagnant, H.S., Uzumcu, M., Buckendahl, P. et al. Fetal and Neonatal Exposure to the Endocrine Disruptor, Methoxychlor, Reduces Lean Body Mass and Bone Mineral Density and Increases Cortical Porosity. Calcif Tissue Int 95, 521–529 (2014). https://doi.org/10.1007/s00223-014-9916-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9916-x

Keywords

Navigation