Skip to main content

Advertisement

Log in

Plasma Level of Homocysteine Associated with Severe Vertebral Fracture in Postmenopausal Women

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The aim of this cross-sectional cohort study was to clarify risk factors for severe vertebral fractures in postmenopausal Japanese women. Subjects were ambulatory volunteers age over 50 years who were recruited from a population of outpatients at a primary care institute. At registration, age, body mass index (BMI), bone mineral density (BMD), and present illness were investigated. Biochemical parameters including urinary levels of type I collagen cross-linked N-telopeptides (NTXs), and pentosidine and plasma levels of homocysteine were measured. Values were compared with different fracture grades (grade 0–3). A total of 1,475 postmenopausal women (66.6 ± 9.0 years) were included in the present study. Distributions of vertebral fracture grades were grade 1, 137 cases (9.3 %); grade 2, 124 cases (8.4 %); and grade 3, 162 cases (11.0 %). Age, BMI, BMD, NTX, pentosidine, and homocysteine were significantly associated with vertebral fracture in unadjusted analysis. In addition, a higher prevalence of hypertension was observed in patients with severe fracture. When comparing vertebral fracture grade 0 versus grade 2–3 by multiple regression analysis, pentosidine and homocysteine levels were a significant risk for moderate/severe vertebral fracture (odds ratio [OR] = 1.17, 95 % confidence interval [CI] 1.00–1.38, p = 0.049; OR = 1.22, 95 % CI 1.03–1.46, p = 0.013). Homocysteine levels were also a significant risk when comparing vertebral fracture grade 0 versus grade 3 (OR = 1.27, 95 % CI 1.04–1.58, p = 0.021). Plasma level of homocysteine was an independent risk for severe vertebral fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  2. Shiraki M, Kuroda T, Shiraki Y, Aoki C, Sasaki K, Tanaka S (2010) Effects of bone mineral density of the lumbar spine and prevalent vertebral fractures on the risk of immobility. Osteoporos Int 21:1545–1551

    Article  PubMed  CAS  Google Scholar 

  3. Kuroda T, Shiraki M, Tanaka S, Ohta H (2009) Contributions of 25-hydroxyvitamin D, co-morbidities and bone mass to mortality in Japanese postmenopausal women. Bone 44:168–172

    Article  PubMed  CAS  Google Scholar 

  4. Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    Article  PubMed  CAS  Google Scholar 

  5. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA III, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739

    Article  PubMed  CAS  Google Scholar 

  6. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382

    Article  PubMed  CAS  Google Scholar 

  7. Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E et al (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532

    Article  PubMed  CAS  Google Scholar 

  8. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) investigators. JAMA 282:637–645

    Article  PubMed  CAS  Google Scholar 

  9. Gallagher JC, Genant HK, Crans GG, Vargas SJ, Krege JH (2005) Teriparatide reduces the fracture risk associated with increasing number and severity of osteoporotic fractures. J Clin Endocrinol Metab 90:1583–1587

    Article  PubMed  CAS  Google Scholar 

  10. Gonnelli S, Caffarelli C, Maggi S, Rossi S, Siviero P, Gandolini G, Cisari C, Rossini M, Iolascon G, Letizia Mauro G, Crepaldi G, Nuti R, BREAK Study Group (2013) The assessment of vertebral fractures in elderly women with recent hip fractures: the BREAK Study. Osteoporos Int 24:1151–1159

    Article  PubMed  CAS  Google Scholar 

  11. Wustrack R, Seeman E, Bucci-Rechtweg C, Burch S, Palermo L, Black DM (2012) Predictors of new and severe vertebral fractures: results from the HORIZON Pivotal Fracture Trial. Osteoporos Int 23:53–58

    Article  PubMed  CAS  Google Scholar 

  12. Shiraki M, Kuroda T, Tanaka S, Saito M, Fukunaga M, Nakamura T (2008) Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab 26:93–100

    Article  PubMed  CAS  Google Scholar 

  13. Shiraki M, Urano T, Kuroda T, Saito M, Tanaka S, Miyao-Koshizuka M et al (2008) The synergistic effect of bone mineral density and methylenetetrahydrofolate reductase (MTHFR) polymorphism (C677T) on fractures. J Bone Miner Metab 26:595–602

    Article  PubMed  CAS  Google Scholar 

  14. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D et al (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis the Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11:984–996

    Article  PubMed  CAS  Google Scholar 

  15. Siris ES, Genant HK, Laster AJ, Chen P, Misurski DA, Krege JH (2007) Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int 18:761–770

    Article  PubMed  CAS  Google Scholar 

  16. Imai E, Horio M, Watanabe T, Iseki K, Yamagata K, Hara S et al (2009) Prevalence of chronic kidney disease in the Japanese general population. Clin Exp Nephrol 13:621–630

    Article  PubMed  Google Scholar 

  17. Vester B, Rasmussen K (1991) High performance liquid chromatography method for rapid and accurate determination of homocysteine in plasma and serum. Eur J Clin Chem Clin Biochem 29:549–554

    PubMed  CAS  Google Scholar 

  18. Shiraki M, Kuroda T, Shiraki Y, Tanaka S, Higuchi T, Saito M (2011) Urinary pentosidine and plasma homocysteine levels at baseline predict future fractures in osteoporosis patients under bisphosphonate treatment. J Bone Miner Metab 29:62–70

    Article  PubMed  CAS  Google Scholar 

  19. Roux C, Fechtenbaum J, Kolta S, Briot K, Girard M (2007) Mild prevalent and incident vertebral fractures are risk factors for new fractures. Osteoporos Int 18:1617–1624

    Article  PubMed  CAS  Google Scholar 

  20. Bennani L, Allali F, Rostom S, Hmamouchi I, Khazzani H, El Mansouri L et al (2009) Relationship between historical height loss and vertebral fractures in postmenopausal women. Clin Rheumatol 28:1283–1289

    Article  PubMed  Google Scholar 

  21. Suzuki N, Ogikubo O, Hansson T (2009) The prognosis for pain, disability, activities of daily living and quality of life after an acute osteoporotic vertebral body fracture: its relation to fracture level, type of fracture and grade of fracture deformation. Eur Spine J 18:77–88

    Article  PubMed  Google Scholar 

  22. Crans GG, Silverman SL, Genant HK, Glass EV, Krege JH (2004) Association of severe vertebral fractures with reduced quality of life: reduction in the incidence of severe vertebral fractures by teriparatide. Arthritis Rheum 50:4028–4034

    Article  PubMed  CAS  Google Scholar 

  23. Tanaka S, Kuroda T, Saito M, Shiraki M (2011) Urinary pentosidine improves risk classification using fracture risk assessment tools for postmenopausal women. J Bone Miner Res 26:2778–2784

    Article  PubMed  CAS  Google Scholar 

  24. Gineyts E, Munoz F, Bertholon C, Sornay-Rendu E, Chapurlat R (2010) Urinary levels of pentosidine and the risk of fracture in postmenopausal women: the OFELY study. Osteoporos Int 21:243–250

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR et al (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94:2380–2386

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93:1013–1019

    Article  PubMed  CAS  Google Scholar 

  27. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214

    Article  PubMed  CAS  Google Scholar 

  28. Lubec B, Fang-Kircher S, Lubec T, Blom HJ, Boers GH (1996) Evidence for McKusick’s hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta 1315:159–162

    Article  PubMed  Google Scholar 

  29. Khan M, Yamauchi M, Srisawasdi S, Stiner D, Doty S, Paschalis EP et al (2001) Homocysteine decreases chondrocyte-mediated matrix mineralization in differentiating chick limb-bud mesenchymal cell micro-mass cultures. Bone 28:387–398

    Article  PubMed  CAS  Google Scholar 

  30. Jakubowski H (2000) Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem 275:3957–3962

    Article  PubMed  CAS  Google Scholar 

  31. Herrmann M, Tami A, Wildemann B, Wolny M, Wagner A, Schorr H et al (2009) Hyperhomocysteinemia induces a tissue specific accumulation of homocysteine in bone by collagen binding and adversely affects bone. Bone 44:467–475

    Article  PubMed  CAS  Google Scholar 

  32. McLean RR, Hannan MT (2007) B vitamins, homocysteine, and bone disease: epidemiology and pathophysiology. Curr Osteoporos Rep 5:112–119

    Article  PubMed  Google Scholar 

  33. Van Meus J, Dhonukshe-Rutten R, Pluijm S, van der Klift M, deJonge R, Lindemans J et al (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350:2033–2041

    Article  Google Scholar 

  34. El Maghraoui A, Ghozlani I, Mounach A, Rezqi A, Oumghar K, Achemlal L et al (2012) Homocysteine, folate, and vitamin B12 levels and vertebral fracture risk in postmenopausal women. J Clin Densitom 15:328–333

    Article  PubMed  Google Scholar 

  35. McCarthy AD, Etcheverry SB, Bruzzone L, Lettieri G, Barrio DA, Cortizo AM (2001) Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress. BMC Cell Biol 2:16

    Article  PubMed  CAS  Google Scholar 

  36. Saito M, Fujii K, Marumo K (2006) Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int 79:160–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-aid from the Japan Osteoporosis Foundation and a Grant-in-aid for comprehensive research on aging and health from the Ministry of Health, Labor, and Welfare of Japan. The authors thank Dr. Toshitaka Nakamura for valuable discussions regarding this report and Mr. Yasushi Yamazaki for excellent support with the measurements of biochemical indices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiko Kuroda.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, T., Tanaka, S., Saito, M. et al. Plasma Level of Homocysteine Associated with Severe Vertebral Fracture in Postmenopausal Women. Calcif Tissue Int 93, 269–275 (2013). https://doi.org/10.1007/s00223-013-9754-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9754-2

Keywords

Navigation