Skip to main content

Advertisement

Log in

Racial Differences in the Association of Subcutaneous and Visceral Fat on Bone Mineral Content in Prepubertal Children

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Total fat mass plays a significant role in determining bone mass, but the specific role of central adiposity independent of total fat mass has not been widely studied. Prepubertal (Tanner 1) children (n = 181; 65 boys, 116 girls, 7.8 ± 1.5 years), including 99 Caucasians and 82 African Americans from Birmingham, Alabama, participated in this study. Body composition, including total body and trunk fat mass, and bone mineral content (BMC) were measured using dual-energy X-ray absorptiometry. Subcutaneous abdominal adipose tissue (SAAT) and intra-abdominal adipose tissue (IAAT) were determined by single-slice computed tomography (CT). After adjusting for gender, age, height, total fat, and lean mass, trunk weight was inversely correlated with BMC in Caucasians (r = −0.56, P < 0.0001) and in African Americans (r = −0.37, P < 0.05). In Caucasians, independent of gender, age, height, total fat, and lean mass, there was an inverse correlation between SAAT and BMC (r = −0.58, P < 0.0001) but no significant correlation between IAAT and BMC; in addition, SAAT explained 6% of the variance in BMC. In contrast, in African Americans, SAAT and BMC were not significantly correlated. However, while adjusting for gender, age, height, SAAT, total fat, and lean mass, an inverse association between IAAT and BMC was observed in African Americans (r = −0.50, P < 0.01); IAAT also explained 3% of the variance in BMC. These findings suggest that, in general, total abdominal weight is negatively associated with bone mass, but there appear to be racial differences with regard to the contributions of subcutaneous and visceral fat to BMC in prepubertal children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folsom AR, Prineas RJ, Kaye SA, Munger R (1990) Incidence of hypertension and stroke in relation to body fat distribution and other risk factors in older women. Stroke 21:701–706

    PubMed  CAS  Google Scholar 

  2. Hans TS, Feskens EJ, Lean ME, Seidell JC (1998) Associations of body composition with type 2 diabetes mellitus. Diabet Med 15:129–135

    Article  Google Scholar 

  3. Roe TF, Mora S, Costin G, Kaufman F, Carlson ME, Gilsanz V (1991) Vertebral bone density in insulin-dependent diabetic children. Metabolism 40:967–971

    Article  PubMed  CAS  Google Scholar 

  4. Ponder SW, McCormick DP, Fawcett HD, Tran AD, Ogelsby GW, Brouhard BH, Travis LB (1992) Bone mineral density of the lumbar vertebrae in children and adolescents with insulin-dependent diabetes mellitus. J Pediatr 120:541–545

    Article  PubMed  CAS  Google Scholar 

  5. Lettgen B, Hauffa B, Mohlmann C, Jeken C, Reiners C (1995) Bone mineral density in children and adolescents with juvenile diabetes: selective measurement of bone mineral density of trabecular and cortical bone using peripheral quantitative computed tomography. Horm Res 43:173–175

    Article  PubMed  CAS  Google Scholar 

  6. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44:775–782

    PubMed  CAS  Google Scholar 

  7. Finkelstein JS, Lee MLT, Sowers M, Ettinger B, Neer RM, Kelsey JL, Cauley JA, Huang MH, Greendale GA (2002) Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab 87:3057–3067

    Article  PubMed  CAS  Google Scholar 

  8. Yanovski JA, Yanovski SZ, Filmer KM, Hubbard VS, Avila N, Lewis B, Reynolds JC, Flood M (1996) Differences in body composition of black and white girls. Am J Clin Nutr 64:833–839

    PubMed  CAS  Google Scholar 

  9. Haffner SM, D’Agostino RB Jr, Saad MF, Rewers M, Mykkanen L, Selby J, Howard G, Savage PJ, Hamman RF, Wagenknecht LE, Bergman RN (1996) Increased insulin resistance and insulin secretion in nondiabetic African Americans and Hispanics compared with non-Hispanic whites: the Insulin Resistance Atherosclerosis Study. Diabetes 45:742–748

    PubMed  CAS  Google Scholar 

  10. Goran MI, Gower BA (1999) Relation between visceral fat and disease risk in children and adolescents. Am J Clin Nutr 70(suppl):149S−156S

    CAS  Google Scholar 

  11. Gower BA, Nagy TR, Trowbridge CA, Dezenberg C, Goran MI (1998) Fat distribution and insulin response in prepubertal African American and white children. Am J Clin Nutr 67:821–827

    PubMed  CAS  Google Scholar 

  12. Jiang X, Srinivasan SR, Radhakrishnamurthy B, Dalferes ER, Berenson GS (1996) Racial (black-white) differences in insulin secretion and clearance in adolescents: the Bogalusa Heart Study. Pediatrics 97:357–360

    PubMed  CAS  Google Scholar 

  13. Gutin B, Islam S, Manos T, Cucuzzo N, Smith C, Stachura ME (1998) Relation of percentage of body fat and maximal aerobic capacity to risk factors for atherosclerosis and diabetes in black and white seven-to eleven-year-old children. J Pediatr 125:847–852

    Google Scholar 

  14. Cummings SR, Cauley JA, Palermo L, Ross PD, Wasnich RD, Black D, Faulkner KG (1994) Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Osteoporos Int 4:226–229

    Article  PubMed  CAS  Google Scholar 

  15. Han ZH, Palnitkar S, Rao DS, Nelson D, Parfitt AM (1997) Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res 12:498–508

    Article  PubMed  CAS  Google Scholar 

  16. Tarquini B, Navari N, Perfetto F, Piluso A, Romano S, Tarquini R (1997) Evidence for bone mass and body fat distribution relationship in postmenopausal obese women. Arch Gerontol Geriatr 24:15–21

    Article  PubMed  CAS  Google Scholar 

  17. Heiss CJ, Sanborn CF, Nichols DL, Bonnick SL, Alford BB (1995) Associations of body fat distribution, circulating sex hormones, and bone density in postmenopausal women. J Clin Endocrinol Metab 80:1591–1596

    Article  PubMed  CAS  Google Scholar 

  18. Stewart KJ, Deregis JR, Turner KL, Bacher AC, Sung J, Hees PS, Tayback M, Ouyang P (2002) Fitness, fatness and activity as predictors of bone mineral density in older persons. J Intern Med 252:381–388

    Article  PubMed  CAS  Google Scholar 

  19. Jankowska EA, Rogucka E, Medras M (2001) Are general obesity and visceral adiposity in men linked to reduced bone mineral content resulting from normal aging? A population-based study. Andrologia 33:384–389

    Article  PubMed  CAS  Google Scholar 

  20. Huang JS, Rietschel P, Hadigan CM, Rosenthal DI, Grinspoon S (2001) Increased abdominal visceral fat is associated with reduced bone density in HIV-infected men with lipodystrophy. AIDS 15:975–982

    Article  PubMed  CAS  Google Scholar 

  21. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes 24:627–632

    Article  CAS  Google Scholar 

  22. Ellis KJ, Shypailo RJ, Wong WW, Abrams SA (2003) Bone mineral mass in overweight and obese children: diminished or enhanced? Acta Diabetol 40:S274–S277

    Article  PubMed  Google Scholar 

  23. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    PubMed  CAS  Google Scholar 

  24. Marshall WA, Tanner JM (1969) Variations in the pattern of pubertal changes in girls. Arch Dis Child 44:291–303

    PubMed  CAS  Google Scholar 

  25. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23

    Article  PubMed  CAS  Google Scholar 

  26. Lohman TG, Roche AF, Martorell R (1988) Anthropometric Standardization Reference Manual. Human Kinetics, Champaign, IL

    Google Scholar 

  27. Treuth MS, Hunter GR, Kekes-Szabo T (1995) Estimating intra-abdominal adipose tissue in women by dual-energy X-ray absorptiometry. Am J Clin Nutr 62:527–532

    PubMed  CAS  Google Scholar 

  28. Goran MI, Kaskoun MC, Shuman WP (1995) Intra-abdominal adipose tissue in young children. Int J Obes 19:279–283

    CAS  Google Scholar 

  29. Trowbridge C, Gower BA, Nagy TR, Goran MI (1997) Aerobic fitness in Caucasian and African American children. Am J Physiol 273:E809–E814

    PubMed  CAS  Google Scholar 

  30. Reid IR, Ames R, Evans MC, Sharpe S, Gamble G, France JT, Lim TMT, Cundy TF (1992) Determinants of total body and regional bone mineral density in normal postmenopausal women — a key role for fat mass. J Clin Endocrinol Metab 75:45–51

    Article  PubMed  CAS  Google Scholar 

  31. Afghani A, Xie B, Wiswell RA, Gong J, Li Y, Johnson CA (2003) Bone mass of Asian adolescents in China: influence of physical activity and smoking. Med Sci Sports Exerc 35:720–729

    Article  PubMed  Google Scholar 

  32. Afghani A, Abbott AV, Wiswell RA, Jaque SV, Gleckner C, Schroeder ET, Johnson CA (2004) Bone mineral density in Hispanic women: role of aerobic capacity, fat-free mass, and adiposity. Int J Sports Med 25:384–390

    Article  PubMed  CAS  Google Scholar 

  33. Afghani A, Cruz ML, Goran MI (2005) Impaired glucose tolerance and bone mineral content in overweight Latino children with a family history of type 2 diabetes. Diabetes Care 28:372–378

    PubMed  CAS  Google Scholar 

  34. Compston JE, Bhambhani M, Laskey MA, Murphy S, Khaw KT (1992) Body composition and bone mass in postmenopausal women. Clin Endocrinol 37:426–431

    CAS  Google Scholar 

  35. Horlick M, Thornton J, Wang J, Levine LS, Fedun B, Pierson RN Jr (2000) Bone mineral in prepubertal children: gender and ethnicity. J Bone Miner Res 15:1393–1397

    Article  PubMed  CAS  Google Scholar 

  36. Taylor RW, Gold E, Manning P, Goulding A (1997) Gender differences in body fat content are present well before puberty. Int J Obes Relat Metab Disord 21:1082–1084

    Article  PubMed  CAS  Google Scholar 

  37. Gower BA, Nagy TR, Goran MI (1999) Visceral fat, insulin sensitivity, and lipids in prepubertal children. Diabetes 48:1515–1521

    PubMed  CAS  Google Scholar 

  38. Barrett-Connor E, Kritz-Silverstein D (1996) Does hyperinsulinemia preserve bone? Diabetes Care 19:1388–1392

    PubMed  CAS  Google Scholar 

  39. Reid IR, Evans MC, Cooper GJ, Ames RW, Stapleton J (1993) Circulating insulin levels are related to bone density in normal postmenopausal women. Am J Physiol 265:E655–E659

    PubMed  CAS  Google Scholar 

  40. Kontongianni MD, Dafni UG, Routsias JG, Skopouli FN (2004) Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res 19:546–551

    Article  CAS  Google Scholar 

  41. Blum M, Harris SS, Must A, Naumova EN, Phillips SM, Rand WM, Dawson-Hughes B (2003) Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 73:27–32

    Article  PubMed  CAS  Google Scholar 

  42. Sato M, Takeda N, Sarui H, Takami R, Takami K, Hayashi M, Sasaki A, Kawachi S, Yoshino K, Yasuda K (2001) Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab 86:5273–5276

    Article  PubMed  CAS  Google Scholar 

  43. Ormarsdottir S, Ljunggren O, Mallmin H, Olofsson H, Blum WF, Loof L (2001) Inverse relationship between circulating levels of leptin and bone mineral density in chronic liver disease. J Gastroenterol Hepatol 16:1409–1414

    Article  PubMed  CAS  Google Scholar 

  44. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    Article  PubMed  CAS  Google Scholar 

  45. Pocock NA (1997) Magnification error of femoral geometry using fan beam densitometers. Calcif Tissue Int 60:8–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Institutes of Health (R01 HD 33064 and R01 DK 59211) and in part by the General Clinical Research Center, National Center for Research Resources (M01 RR 00043). We are grateful to the nursing and bionutrition staff at the General Clinical Research Center at the University of Alabama at Birmingham. We are indebted to the children and their families who participated in this study. This work was presented in part at the 33rd European Symposium on Calcified Tissues, Prague, Czech Republic, May 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Afghani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afghani, A., Goran, M.I. Racial Differences in the Association of Subcutaneous and Visceral Fat on Bone Mineral Content in Prepubertal Children. Calcif Tissue Int 79, 383–388 (2006). https://doi.org/10.1007/s00223-006-0116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0116-1

Keywords

Navigation