Skip to main content

Advertisement

Log in

Lentiviral Transduction of Human Postnatal Skeletal (Stromal, Mesenchymal) Stem Cells: In Vivo Transplantation and Gene Silencing

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Systems for gene transfer and silencing in human skeletal stem cells (hSSCs, also stromal or mesenchymal stem cells) are important for addressing critical issues in basic hSSC and skeletal biology and for developing gene therapy strategies for treatment of skeletal diseases. Whereas recent studies have shown the efficacy of lentiviral transduction for gene transfer in hSSCs in vitro, no study has yet proven that lentivector-transduced hSSCs retain their distinctive organogenic potential in vivo, as probed by in vivo transplantation assays. Therefore, in addition to analyzing the in vitro growth and differentiation properties of hSSCs transduced with advanced-generation lentivectors, we ectopically transplanted LV-eGFP-transduced hSSCs (along with an osteoconductive carrier) in the subcutaneous tissue of immunocompromised mice. eGFP-transduced cells formed heterotopic ossicles, generating osteoblasts, osteocytes, and stromal cells in vivo, which still expressed GFP at 2 months after transplantation. eGFP-expressing cells could be recovered from the ossicles 8 weeks posttransplantation and reestablished in culture as viable and proliferating cells. Further, we investigated the possibility of silencing individual genes in hSSCs using lentivectors encoding short hairpin precursors of RNA interfering sequences under the control of the Pol-III-dependent H1 promoter. Significant long-term silencing of both lamin A/C and GFP (an endogenous gene and a transgene, respectively) was obtained with lentivectors encoding shRNAs. These data provide the basis for analysis of the effect of gene knockdown during the organogenesis of bone in the in vivo transplantation system and for further studies on the silencing of alleles carrying dominant, disease-causing mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bianco P, Gehron Robey P (2000) Marrow stromal stem cells. J Clin Invest 105:1663–1668

    PubMed  CAS  Google Scholar 

  2. Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121

    Article  PubMed  CAS  Google Scholar 

  3. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  PubMed  CAS  Google Scholar 

  4. Bianco P, Gehron Robey P (2004) Skeletal stem cells. In: Lanza R (ed), Handbook of Stem Cells. Academic Press, New York, pp 415–424

    Google Scholar 

  5. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    PubMed  CAS  Google Scholar 

  6. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340

    PubMed  CAS  Google Scholar 

  7. Friedenstein AJ (1980) Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Hamatol Bluttransfus 25:19–29

    CAS  Google Scholar 

  8. Friedenstein AJ (1980) Immunology of bone marrow transplantation. In: Thierfelder S, Rodt H, Kolb HJ (eds), Haematology and Blood Transfusion. Springer-Verlag, Berlin, pp 19–29

    Google Scholar 

  9. Friedenstein AJ, Latzinik NW, Grosheva AG, Gorskaya UF (1982) Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol 10:217–227

    PubMed  CAS  Google Scholar 

  10. Friedenstein A (1989) Stromal-hematopoietic interrelationships: Maximov’s ideas and modern models. Hamatol Bluttransfus 32:159–167

    CAS  Google Scholar 

  11. Friedenstein AJ (1990) Bone marrow osteogenic stem cells. In: Cohn DV, Glorieux FH, Martin TJ (eds), Calcium Regulation and Bone Metabolism. Elsevier, Cambridge, pp 353–361

    Google Scholar 

  12. Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22:81–91

    Article  PubMed  CAS  Google Scholar 

  13. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Article  PubMed  CAS  Google Scholar 

  14. Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  PubMed  CAS  Google Scholar 

  15. Pereira RF, O’Hara MD, Laptev AV, Halford KW, Pollard MD, Class R, Simon D, Livezey K, Prockop DJ (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 95:1142–1147

    Article  PubMed  CAS  Google Scholar 

  16. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  17. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    Article  PubMed  CAS  Google Scholar 

  18. Cheng SL, Lou J, Wright NM, Lai CF, Avioli LV, Riew KD (2001) In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. Calcif Tissue Int 68:87–94

    PubMed  CAS  Google Scholar 

  19. Dayoub H, Dumont RJ, Li JZ, Dumont AS, Hankins GR, Kallmes DF, Helm GA (2003) Human mesenchymal stem cells transduced with recombinant bone morphogenetic protein-9 adenovirus promote osteogenesis in rodents. Tissue Eng 9:347–356

    Article  PubMed  CAS  Google Scholar 

  20. Deng W, Bivalacqua TJ, Chattergoon NN, Hyman AL, Jeter JR Jr, Kadowitz PJ (2003) Adenoviral gene transfer of eNOS: high-level expression in ex vivo expanded marrow stromal cells. Am J Physiol Cell Physiol 285:C1322-C1329

    PubMed  CAS  Google Scholar 

  21. Chang SC, Chuang HL, Chen YR, Chen JK, Chung HY, Lu YL, Lin HY, Tai CL, Lou J (2003) Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther 10:2013–2019

    Article  PubMed  CAS  Google Scholar 

  22. Conget PA, Minguell JJ (2000) Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp Hematol 28:382–390

    Article  PubMed  CAS  Google Scholar 

  23. Shenk T, Horwitz MS (1996) Adenoviridae. In: Fields BN, Knipe DM, Howley PM (eds), Virology. Lippincott Williams & Wilkins, Philadelphia, pp 2111–2171

    Google Scholar 

  24. Olmsted-Davis EA, Gugala Z, Gannon FH, Yotnda P, McAlhany RE, Lindsey RW, Davis AR (2002) Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Hum Gene Ther 13:1337–1347

    Article  PubMed  CAS  Google Scholar 

  25. Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, Underwood RA, Song KM, Sussman M, Byers PH, Russell DW (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303:1198–1201

    Article  PubMed  CAS  Google Scholar 

  26. Lee K, Majumdar MK, Buyaner D, Hendricks JK, Pittenger MF, Mosca JD (2001) Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther 3:857–866

    Article  PubMed  CAS  Google Scholar 

  27. Bartholomew A, Patil S, Mackay A, Nelson M, Buyaner D, Hardy W, Mosca J, Sturgeon C, Siatskas M, Mahmud N, Ferrer K, Deans R, Moseley A, Hoffman R, Devine SM (2001) Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther 12:1527–1541

    Article  PubMed  CAS  Google Scholar 

  28. Liu P, Kalajzic I, Stover ML, Rowe DW, Lichtler AC (2001) Human bone marrow stromal cells are efficiently transduced by vesicular stomatitis virus-pseudotyped retrovectors without affecting subsequent osteoblastic differentiation. Bone 29:331–335

    Article  PubMed  CAS  Google Scholar 

  29. Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12:2099–2108

    PubMed  CAS  Google Scholar 

  30. Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–516

    PubMed  CAS  Google Scholar 

  31. Svoboda J, Hejnar J, Geryk J, Elleder D, Vernerova Z (2000) Retroviruses in foreign species and the problem of provirus silencing. Gene 261:181–188

    Article  PubMed  CAS  Google Scholar 

  32. Chan J, O’Donoghue K, de la Fuente J, Roberts IA, Kumar S, Morgan JE, Fisk NM (2005) Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 23:93–102

    Article  PubMed  CAS  Google Scholar 

  33. Hoelters J, Ciccarella M, Drechsel M, Geissler C, Gulkan H, Bocker W, Schieker M, Jochum M, Neth P (2005) Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J Gene Med

  34. Chuah MK, Brems H, Vanslembrouck V, Collen D, Vandendriessche T (1998) Bone marrow stromal cells as targets for gene therapy of hemophilia A. Hum Gene Ther 9:353–365

    PubMed  CAS  Google Scholar 

  35. Van Damme A, Vanden Driessche T, Collen D, Chuah MK (2002) Bone marrow stromal cells as targets for gene therapy. Curr Gene Ther 2:195–209

    Article  PubMed  Google Scholar 

  36. Hannon G (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  37. Naldini L, Blomer U, Gallay P, Ory D, Muligan R, Gage F, Verma I, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–266

    PubMed  CAS  Google Scholar 

  38. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  39. Zhang XY, La Russa VF, Bao L, Kolls J, Schwarzenberger P, Reiser J (2002) Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 5:555–565

    Article  PubMed  CAS  Google Scholar 

  40. Zhang XY, La Russa VF, Reiser J (2004) Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 78:1219–1229

    Article  PubMed  CAS  Google Scholar 

  41. Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20:263–272

    PubMed  CAS  Google Scholar 

  42. Bianco P, Riminucci M, Majolagbe A, Kuznetsov SA, Collins MT, Mankani MH, Corsi A, Bone HG, Wientroub S, Spiegel AM, Fisher LW, Robey PG (2000) Mutations of the GNAS1 gene, stromal cell dysfunction, and osteomalacic changes in non-McCune-Albright fibrous dysplasia of bone. J Bone Miner Res 15:120–128

    Article  PubMed  CAS  Google Scholar 

  43. Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12:1335–1347

    Article  PubMed  CAS  Google Scholar 

  44. Bianco P, Kuznetsov SA, Riminucci M, Fisher LW, Spiegel AM, Robey PG (1998) Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsalpha-mutated skeletal progenitor cells. J Clin Invest 101:1737–1744

    PubMed  CAS  Google Scholar 

  45. Gimbrone MA Jr (1976) Culture of vascular endothelium. Prog Hemost Thromb 3:1–28

    PubMed  Google Scholar 

  46. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    Article  PubMed  CAS  Google Scholar 

  47. Herbertson A, Aubin JE (1995) Dexamethasone alters the subpopulation make-up of rat bone marrow stromal cell cultures. J Bone Miner Res 10:285–294

    Article  PubMed  CAS  Google Scholar 

  48. Gimble JM, Morgan C, Kelly K, Wu X, Dandapani V, Wang CS, Rosen V (1995) Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J Cell Biochem 58:393–402

    Article  PubMed  CAS  Google Scholar 

  49. Krebsbach PH, Kuznetsov SA, Satomura K, Emmons RV, Rowe DW, Gehron Robey P (1997) Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63:1059–1069

    Article  PubMed  CAS  Google Scholar 

  50. Kuznetsov SA, Riminucci M, Gehron Robey P, Bianco P (2006) Post-natal skeletal stem cells methods for isolation and analysis of bone marrow stromal cells (BMSCs) from post-natal murine and human marrow. In: Celis J (ed), Cell Biology - A Laboratory Manual. Elsevier, Amsterdam, pp 79–86

    Google Scholar 

  51. Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, Waguespack S, Gupta A, Hannon T, Econs MJ, Bianco P, Gehron Robey P (2003) FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 112:683–692

    Article  PubMed  CAS  Google Scholar 

  52. Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  PubMed  CAS  Google Scholar 

  53. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114:4557–4565

    PubMed  CAS  Google Scholar 

  54. Satomura K, Krebsbach P, Bianco P, Gehron Robey P (2000) Osteogenic imprinting upstream of marrow stromal cell differentiation. J Cell Biochem 78:391–403

    Article  PubMed  CAS  Google Scholar 

  55. Hamaguchi I, Woods NB, Panagopoulos I, Andersson E, Mikkola H, Fahlman C, Zufferey R, Carlsson L, Trono D, Karlsson S (2000) Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro. J Virol 74:10778–10784

    Article  PubMed  CAS  Google Scholar 

  56. Vroemen M, Weidner N, Blesch A (2005) Loss of gene expression in lentivirus- and retrovirus-transduced neural progenitor cells is correlated to migration and differentiation in the adult spinal cord. Exp Neurol 195:127–139

    Article  PubMed  CAS  Google Scholar 

  57. Martinez-Serrano A, Villa A, Navarro B, Rubio FJ, Bueno C (2000) Human neural progenitor cells: better blue than green? Nat Med 6:483–484

    Article  PubMed  CAS  Google Scholar 

  58. Guo ZS, Wang L-H, Eisensmith RC, Woo SLC (1996) Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther 3:802–810

    PubMed  CAS  Google Scholar 

  59. Lee CI, Kohn DB, Ekert JE, Tarantal AF (2004) Morphological analysis and lentiviral transduction of fetal monkey bone marrow-derived mesenchymal stem cells. Mol Ther 9:112–123

    Article  PubMed  CAS  Google Scholar 

  60. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  61. Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100:1844–1848

    Article  PubMed  CAS  Google Scholar 

  62. Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77:8957–8961

    Article  PubMed  CAS  Google Scholar 

  63. Bianco P, Gehron Robey P, Wientroub S (2003) Fibrous dysplasia. In: Glorieux FH, Pettifor JM, Juppmer H (eds), Pediatric bone - biology and disease. Academic Press, New York, pp 509–540

    Google Scholar 

  64. Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL, Paulson HL (2003) Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 100:7195–7200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from MIUR, Telethon (grant GGP04263), AIRC, Istituto Superiore di Sanità and European Union (GENOSTEM, to P. B.) and from MIUR and Istituto Pasteur Cenci Bolognetti (to I. S.). We are grateful to V. Velotta and S. Morese for their contribution in the production of recombinant vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bianco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piersanti, S., Sacchetti, B., Funari, A. et al. Lentiviral Transduction of Human Postnatal Skeletal (Stromal, Mesenchymal) Stem Cells: In Vivo Transplantation and Gene Silencing. Calcif Tissue Int 78, 372–384 (2006). https://doi.org/10.1007/s00223-006-0001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0001-y

Keywords

Navigation