Skip to main content

Advertisement

Log in

Calvarial Osteoclasts Express a Higher Level of Tartrate-Resistant Acid Phosphatase than Long Bone Osteoclasts and Activation Does not Depend on Cathepsin K or L Activity

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

An Erratum to this article was published on 14 February 2007

Abstract

Bone resorption by osteoclasts depends on the activity of various proteolytic enzymes, in particular those belonging to the group of cysteine proteinases. Next to these enzymes, tartrate-resistant acid phosphatase (TRAP) is considered to participate in this process. TRAP is synthesized as an inactive proenzyme, and in vitro studies have shown its activation by cysteine proteinases. In the present study, the possible involvement of the latter enzyme class in the in vivo modulation of TRAP was investigated using mice deficient for cathepsin K and/or L and in bones that express a high (long bone) or low (calvaria) level of cysteine proteinase activity. The results demonstrated, in mice lacking cathepsin K but not in those deficient for cathepsin L, significantly higher levels of TRAP activity in long bone. This higher activity was due to a higher number of osteoclasts. Next, we found considerable differences in TRAP activity between calvarial and long bones. Calvarial bones contained a 25-fold higher level of activity than long bones. This difference was seen in all mice, irrespective of genotype. Osteoclasts isolated from the two types of bone revealed that calvarial osteoclasts expressed higher enzyme activity as well as a higher level of mRNA for the enzyme. Analysis of TRAP-deficient mice revealed higher levels of nondigested bone matrix components in and around calvarial osteoclasts than in long bone osteoclasts. Finally, inhibition of cysteine proteinase activity by specific inhibitors resulted in increased TRAP activity. Our data suggest that neither cathepsin K nor L is essential in activating TRAP. The findings also point to functional differences between osteoclasts from different bone sites in terms of participation of TRAP in degradation of bone matrix. We propose that the higher level of TRAP activity in calvarial osteoclasts compared to that in long bone cells may partially compensate for the lower cysteine proteinase activity found in calvarial osteoclasts and TRAP may contribute to the degradation of noncollagenous proteins during the digestion of this type of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vaananen H K, Horton M (1995) The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci 108:2729–2732

    PubMed  CAS  Google Scholar 

  2. Mulari M, Vaaraniemi J, Vaananen HK (2003) Intracellular membrane trafficking in bone resorbing osteoclasts. Microsc Res Tech 61:496–503

    Article  PubMed  CAS  Google Scholar 

  3. Debari K, Sasaki T, Udagawa N, Rifkin BR (1995) An ultrastructural evaluation of the effects of cysteine-proteinase inhibitors on osteoclastic resorptive functions. Calcif Tissue Int 56:566–570

    Article  PubMed  CAS  Google Scholar 

  4. Everts V, Beertsen W, Schroeder R (1988) Effects of the proteinase inhibitors leupeptin and E-64 on osteoclastic bone resorption. Calcif Tissue Int 43:172–178

    PubMed  CAS  Google Scholar 

  5. Xia L, Kilb J, Wex H, Li Z, Lipyansky A, Breuil V, Stein L, Palmer JT, Dempster DW, Bromme D (1999) Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones. Biol Chem 380:679–687

    Article  PubMed  CAS  Google Scholar 

  6. Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273

    Article  PubMed  CAS  Google Scholar 

  7. Nesbitt SA, Norton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276:266–269

    Article  PubMed  CAS  Google Scholar 

  8. Zaidi M, Moonga B, Moss DW, MacIntyre I (1989) Inhibition of osteoclastic acid phosphatase abolishes bone resorption. Biochem Biophys Res Commun 159:68–71

    Article  PubMed  CAS  Google Scholar 

  9. Moonga B S, Moss DW, Patchell A, Zaidi M (1990) Intracellular regulation of enzyme secretion from rat osteoclasts and evidence for a functional role in bone resorption. J Physiol 429:29–45

    PubMed  CAS  Google Scholar 

  10. Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122:3151–3162

    PubMed  CAS  Google Scholar 

  11. Suter A, Everts V, Boyde A, Jones SJ, Lullmann-Rauch R, Hartmann D, Hayman AR, Cox TM, Evans MJ, Meister T, von Figura K, Saftig P (2001) Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 128:4899–4910

    PubMed  CAS  Google Scholar 

  12. Angel NZ, Walsh N, Forwood MR, Ostrowski MC, Cassady AI, Hume DA (2000) Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J Bone Miner Res 15:103–110

    Article  PubMed  CAS  Google Scholar 

  13. Andersson G, Ek-Rylander B (1995) The tartrate-resistant purple acid phosphatase of bone osteoclasts – a protein phosphatase with multivalent substrate specificity and regulation. Acta Orthop Scand Suppl 266:189–194

    PubMed  CAS  Google Scholar 

  14. Ek-Rylander B, Flores M, Wendel M, Heinegard D, Andersson G (1994) Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J Biol Chem 269:14853–14856

    PubMed  CAS  Google Scholar 

  15. Hollberg K, Hultenby K, Hayman A, Cox T, Andersson G (2002) Osteoclasts from mice deficient in tartrate-resistant acid phosphatase have altered ruffled borders and disturbed intracellular vesicular transport. Exp Cell Res 279:227–238

    Article  PubMed  CAS  Google Scholar 

  16. Ljusberg J, Ek-Rylander B, Andersson G (1999) Tartrate-resistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem J 343:63–69

    Article  PubMed  CAS  Google Scholar 

  17. Funhoff EG, Ljusberg J, Wang Y, Andersson G, Averill BA (2001) Mutational analysis of the interaction between active site residues and the loop region in mammalian purple acid phosphatases. Biochemistry 40:11614–11622

    Article  PubMed  CAS  Google Scholar 

  18. Ljusberg J, Wang Y, Lang P, Norgard M, Dodds R, Hultenby K, Ek-Rylander B, Andersson G (2005) Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem 280:28370–28381

    Article  PubMed  CAS  Google Scholar 

  19. Ljusberg J, Dodds RA, Lark MW, Gowen M, Lazner F, Kola I, Ek-Rylander B, Andersson G (1999) Tartrate-resistant/purple acid phosphatase is proteolytically cleaved in vivo by cathepsin K. J Bone Miner Res 14(suppl):358

    Google Scholar 

  20. Dodds RA, Connor JR, Drake F, Feild J, Gowen M (1998) Cathepsin K mRNA detection is restricted to osteoclasts during fetal mouse development. J Bone Miner Res 13:673–682

    Article  PubMed  CAS  Google Scholar 

  21. Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–12516

    Article  PubMed  CAS  Google Scholar 

  22. Littlewood-Evans A, Kokubo T, Ishibashi O, Inaoka T, Wlodarski B, Gallagher JA, Bilbe G (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20:81–86

    Article  PubMed  CAS  Google Scholar 

  23. Yamaza T, Goto T, Kamiya T, Kobayashi Y, Sakai H, Tanaka T (1998) Study of immunoelectron microscopic localization of cathepsin K in osteoclasts and other bone cells in the mouse femur. Bone 23:499–509

    Article  PubMed  CAS  Google Scholar 

  24. Katunuma N, Matsui A, Inubushi T, Murata E, Kakegawa H, Ohba Y, Turk D, Turk V, Tada Y, Asao T (2000) Structure-based development of pyridoxal propionate derivatives as specific inhibitors of cathepsin K in vitro and in vivo. Biochem Biophys Res Commun 267:850–854

    Article  PubMed  CAS  Google Scholar 

  25. Thompson SK, Halbert SM, Bossard MJ, Tomaszek TA, Levy MA, Zhao B, Smith WW, Abdel-Meguid SS, Janson CA, D’Alessio KJ, McQueney MS, Amegadzie BY, Hanning CR, DesJarlais RL, Briand J, Sarkar SK, Huddleston MJ, Ijames CF, Carr SA, Garnes KT, Shu A, Heys JR, Bradbeer J, Zembryki D, Veber DF (1997) Design of potent and selective human cathepsin K inhibitors that span the active site. Proc Natl Acad Sci USA 94:14249–14254

    Article  PubMed  CAS  Google Scholar 

  26. Votta BJ, Levy MA, Badger A, Bradbeer J, Dodds RA, James IE, Thompson S, Bossard MJ, Carr T, Connor JR, Tomaszek TA, Szewczuk L, Drake FH, Veber DF, Gowen M (1997) Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J Bone Miner Res 12:1396–1406

    Article  PubMed  CAS  Google Scholar 

  27. Inui T, Ishibashi O, Inaoka T, Origane Y, Kumegawa M, Kokubo T, Yamamura T (1997) Cathepsin K antisense oligodeoxynucleotide inhibits osteoclastic bone resorption. J Biol Chem 272:8109–8112

    Article  PubMed  CAS  Google Scholar 

  28. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–1663

    Article  PubMed  CAS  Google Scholar 

  29. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–13458

    Article  PubMed  CAS  Google Scholar 

  30. Goto T, Tsukuba T, Kiyoshima T, Nishimura Y, Kato K, Yamamoto K, Tanaka T (1993) Immunohistochemical localization of cathepsins B, D and L in the rat osteoclast. Histochemistry 99:411–414

    Article  PubMed  CAS  Google Scholar 

  31. Goto T, Kiyoshima T, Moroi R, Tsukuba T, Nishimura Y, Himeno M, Yamamoto K, Tanaka T (1994) Localization of cathepsins B, D, and L in the rat osteoclast by immuno-light and -electron microscopy. Histochemistry 101:33–40

    Article  PubMed  CAS  Google Scholar 

  32. Guay J, Falgueyret JP, Ducret A, Percival MD, Mancini JA (2000) Potency and selectivity of inhibition of cathepsin K, L and S by their respective propeptides. Eur J Biochem 267:6311–6318

    Article  PubMed  CAS  Google Scholar 

  33. Ishibashi O, Inui T, Mori Y, Kurokawa T, Kokubo T, Kumegawa M (2001) Quantification of the expression levels of lysosomal cysteine proteinases in purified human osteoclastic cells by competitive RT-PCR. Calcif Tissue Int 68:109–116

    PubMed  CAS  Google Scholar 

  34. Everts V, Delaisse JM, Korper W, Beertsen W (1998) Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone. J Bone Miner Res 13:1420–1430

    Article  PubMed  CAS  Google Scholar 

  35. Hill PA, Buttle DJ, Jones SJ, Boyde A, Murata M, Reynolds JJ, Meikle MC (1994) Inhibition of bone resorption by selective inactivators of cysteine proteinases. J Cell Biochem 56:118–130

    Article  PubMed  CAS  Google Scholar 

  36. Rifkin BR, Vernillo AT, Kleckner AP, Auszmann JM, Rosenberg LR, Zimmerman M (1991) Cathepsin B and L activities in isolated osteoclasts. Biochem Biophys Res Commun 179:63–69

    Article  PubMed  CAS  Google Scholar 

  37. Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, Docherty AJ, Beertsen W (1999) Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J 13:1219–1230

    PubMed  CAS  Google Scholar 

  38. Palmer JT, Rasnick D, Klaus JL, Bromme D (1996) Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem 38:3193–3196

    Article  Google Scholar 

  39. Roth W, Deussing J, Botchkarev VA, Pauly-Evers M, Saftig P, Hafner A, Schmidt P, Schmahl W, Scherer J, Anton-Lamprecht I, von Figura K, Paus R, Peters C (2000) Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and perturbation of hair follicle cycling. FASEB J 14:2075–2086

    Article  PubMed  CAS  Google Scholar 

  40. Kerkvliet E, Jansen I, Schoenmaker T, Beertsen W, Everts V (2003) Collagen type I, III and V differently modulate synthesis and activation of matrix metalloproteinases by cultured rabbit periosteal fibroblasts. Matrix Biol 22:217–227

    Article  PubMed  CAS  Google Scholar 

  41. Funhoff EG, Klaassen CH, Samyn B, Van Beeumen J, Averill BA (2001) The highly exposed loop region in mammalian purple acid phosphatase controls the catalytic activity. Chem Biochem 2:355–363

    CAS  Google Scholar 

  42. Kiviranta R, Morko J, Alatalo SL, Nicamhlaoibh R, Risteli J, Laitala-Leinonen T, Vuorio E (2005) Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio. Bone 36:159–172

    Article  PubMed  CAS  Google Scholar 

  43. Kominami E, Tsukahara T, Bando Y, Katunuma N (1987) Autodegradation of lysosomal cysteine proteinases. Biochem Biophys Res Commun 144:749–756

    Article  PubMed  CAS  Google Scholar 

  44. Montenez JP, Delaisse JM, Tulkens PM, Kishore BK (1994) Increased activities of cathepsin B and other lysosomal hydrolases in fibroblasts and bone tissue cultured in the presence of cysteine proteinases inhibitors. Life Sci 55:1199–1208

    Article  PubMed  CAS  Google Scholar 

  45. Delaisse JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L (2003) Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech 61:504–513

    Article  PubMed  CAS  Google Scholar 

  46. Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR, Jones C, Kurdyla JT, McNulty DE, Drake FH, Gowen M, Levy MA (1996) Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem 271:12517–12524

    Article  PubMed  CAS  Google Scholar 

  47. Bromme D, Okamoto K, Wang BB, Biroc S (1996) Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem 271:2126–2132

    Article  PubMed  CAS  Google Scholar 

  48. Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, Foged NT, Delmas PD, Delaisse JM (1998) The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 273:32347–32352

    Article  PubMed  CAS  Google Scholar 

  49. Potts W, Bowyer J, Jones H, Tucker D, Freemont AJ, Millest M, Martin M, Vernon W, Neerunjun D, Slynn G, Harper F, Maciewicz R (2004) Cathepsin L-deficient mice exhibit abnormal skin and bone development and show increased resistance to osteoporosis following ovariectomy. Int J Exp Pathol 85:85–96

    Article  PubMed  CAS  Google Scholar 

  50. Brage M, Lie A, Ransjö M, Kasprzykowski F, Kasprzykowska R, Abrahamson M, Grubb A, Lerner UH (2004) Osteoclastogenesis is decreased by cysteine proteinase inhibitors. Bone 34:412–424

    Article  PubMed  CAS  Google Scholar 

  51. Brage M, Abrahamson M, Lindström V, Grubb A, Lerner UH (2005) Different cysteine proteinases involved in bone resorption and osteoclast formation. Calcif Tissue Int 76:439–447

    Article  PubMed  CAS  Google Scholar 

  52. Wittrant Y, Couillaud S, Theoleyre S, Dunstan C, Heymann D, Redini F (2002) Osteoprotegerin differentially regulates protease expression in osteoclast cultures. Biochem Biophys Res Commun 293:38–44

    Article  PubMed  CAS  Google Scholar 

  53. Wittrant Y, Theoleyre S, Couillaud S, Dunstan C, Heymann D, Redini F (2003) Regulation of osteoclast protease expression by RANKL. Biochem Biophys Res Commun 310:774–778

    Article  PubMed  CAS  Google Scholar 

  54. Kirstein B, Chambers TJ, Fuller K (2006) Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem 98:1085–1094

    Article  PubMed  CAS  Google Scholar 

  55. Sodek KL, Tupy JH, Sodek J, Grynpas MD (2000) Relationships between bone protein and mineral in developing porcine long bone and calvaria. Bone 26:189–198

    Article  PubMed  CAS  Google Scholar 

  56. Shorey S, Heersche JN, Manolson MF (2004) The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula. Bone 35:909–917

    Article  PubMed  CAS  Google Scholar 

  57. Buttle DJ, Handley CJ, Ilic MZ, Saklatvala J, Murata M, Barrett AJ (1993) Inhibition of cartilage proteoglycan release by a specific inactivator of cathepsin B and an inhibitor of matrix metalloproteinases. Evidence for two converging pathways of chondrocyte-mediated proteoglycan degradation. Arthritis Rheum 36:1709–1717

    PubMed  CAS  Google Scholar 

  58. Everts V, Korper W, Docherty AJ, Beertsen W (1999) Matrix metalloproteinase inhibitors block osteoclastic resorption of calvarial bone but not the resorption of long bone. Ann NY Acad Sci 878:603–606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. S. Heeneman (Department of Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands) for providing some of the cathepsin K-deficient mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Everts.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00223-006-1024-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Amodio, S., Jansen, D.C., Schoenmaker, T. et al. Calvarial Osteoclasts Express a Higher Level of Tartrate-Resistant Acid Phosphatase than Long Bone Osteoclasts and Activation Does not Depend on Cathepsin K or L Activity. Calcif Tissue Int 79, 245–254 (2006). https://doi.org/10.1007/s00223-005-0289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0289-z

Keywords

Navigation