Skip to main content
Log in

Anomalous partially hyperbolic diffeomorphisms II: stably ergodic examples

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We construct examples of robustly transitive and stably ergodic partially hyperbolic diffeomorphisms f on compact 3-manifolds with fundamental groups of exponential growth such that \(f^n\) is not homotopic to identity for all \(n>0\). These provide counterexamples to a classification conjecture of Pujals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The conjecture was formalized in [9], see also [20, Section 2.2] and [13].

  2. As remarked in [9] it might be better to consider \(W^c\)-conjugacy to a topologically Anosov flow for technical reasons. See [9, Conjecture 1].

  3. It is plausible that all our new examples have this property.

  4. [16] presents special examples of a higher dimensional dynamically coherent partially hyperbolic diffeomorphisms with non-smooth center foliation. It is plausible that these examples cannot be homotoped to ones with smooth center foliation. However they are \(W^c\) conjugate to partially hyperbolic diffeomorphisms with smooth center foliation.

  5. The fact that F has to be \(C^2\) is for technical reasons which we shall not explain here.

References

  1. Barbot, T.: Generalizations of the Bonatti-Langevin example of Anosov flow and their classification up to topological equivalence. Commun. Anal. Geom. 6(4), 749–798 (1998)

  2. Béguin, F., Bonatti, C., Yu, B.: Building Anosov flows on 3-manifolds, Preprint. arXiv:1408.3951

  3. Bonatti, C., Díaz, L.: Persistent transitive diffeomorphisms. Ann. Math. 143(2), 357–396 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonatti, C., Díaz, L., Ures, R.: Minimality of strong stable and strong unstable foliations for partially hyperbolic diffeomorphisms. J. Inst. Math. Jussieu 1(4), 513–541 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonatti, C., Díaz, L., Viana, M.: Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. Encyclopaedia of mathematical sciences, vol. 102. Mathematical physics III, vol. 102, xviii+384 pp. Springer, Berlin (2005)

  6. Bonatti, C., Langevin, R.: Un exemple de flot d’Anosov transitif transverse à un tore et non conjugué à une suspension. Ergod. Theory Dyn. Syst. 14, 633–643 (1994)

    Article  MathSciNet  Google Scholar 

  7. Bonatti, C., Matheus, C., Viana, M., Wilkinson, A.: Abundance of stable ergodicity. Comment. Math. Helv. 79, 753–757 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonatti, C., Parwani, K., Potrie, R.: Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples. Ann. Sci. l’ENS. arXiv:1411.1221 (2016)

  9. Bonatti, C., Wilkinson, A.: Transitive partially hyperbolic diffeomorphisms on 3-manifolds. Topology 44(3), 475–508 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brin, M., Burago, D., Ivanov, S.: On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group. Modern dynamical systems and applications. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  11. Burago, D., Ivanov, S.: Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups. J. Modern Dyn. 2, 541–580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brunella, M.: Separating the basic sets of a nontransitive Anosov flow. Bull. Lond. Math. Soc. 25(5), 487–490 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carrasco, P., Rodriguez Hertz, F., Rodriguez Hertz, M.A., Ures, R.: Partially hyperbolic dynamics in dimension 3, Preprint. arXiv:1501.00932

  14. Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces. Astérisque 66–67, 284 (1979)

  15. Farb, B., Margalit, D.: A primer on mapping class groups. Princeton Mathematical Series, vol. 49, p. xiv+472. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  16. Farrell, F.T., Gogolev, A.: On bundles that admit fiberwise hyperbolic dynamics. Math. Ann. 364(1), 401–438 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hammerlindl, A., Potrie, R.: Pointwise partial hyperbolicity in three dimensional nilmanifolds. J. Lond. Math. Soc. 89(3), 853–875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hammerlindl, A., Potrie, R.: Classification of partially hyperbolic diffeomorphisms in three dimensional manifolds with solvable fundamental group. J. Topol. 8(3), 842–870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Handel, M., Thurston, W.: Anosov flows on new three manifolds. Invent. Math. 59(2), 95–103 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hasselblatt, B., Pesin, Y.: Partially hyperbolic dynamics. In: Hasselblatt, B., Katok, A. (eds.) Handbook of dynamical systems, vol. 1B. Elsevier, Amsterdam (2005)

    Google Scholar 

  21. Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds. Springer Lecture Notes in Mathematics, vol. 583, ii+149 pp. Springer, Berlin, NY (1977)

  22. Johannson, K.: Homotopy equivalences of 3-manifolds with boundary. Lecture Notes in Mathematics, vol. 761, ii+303 pp. Springer, Berlin (1979)

  23. McCullough, D.: Virtually geometrically finite mapping class groups of 3-manifolds. J. Differ. Geom. 33, 1–65 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Parwani, K.: On 3-manifolds that support partially hyperbolic diffeomorphisms. Nonlinearity 23, 589–606 (2010)

  25. Rodriguez Hertz, F., Rodriguez Hertz, M.A., Ures, R.: Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms. In: Forni, G., Lyubich, M., Pugh, C., Shub, M. (eds.) Partially hyperbolic dynamics , laminations and teichmuller flow. Fields Institute Communications vol. 51, pp. 103–112. AMS, Providence, RI (2007)

  26. Rodriguez Hertz, F., Rodriguez Hertz, M.A., Ures, R.: Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1d-center bundle. Invent. Math. 172, 353–381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rodriguez Hertz, F., Rodriguez Hertz, M.A., Tahzibi, A., Ures, R.: Creation of blenders in the conservative setting. Nonlinearity 23(2), 211–223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rodriguez Hertz, F., Rodriguez Hertz, M.A., Ures, R.: A non-dynamically coherent example \({\mathbb{T}}^3\). Ann l’IHP (C) Non linear Anal. (2015). doi:10.1016/j.anihpc.2015.03.003

  29. Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math (2) 87, 56–88 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wilkinson, A.: Conservative partially hyperbolic dynamics. In: 2010 ICM Proceedings (2010)

Download references

Acknowledgments

The second author would like to thank Dmitry Scheglov for many enlightening discussions and Anton Petrunin for a very useful communication. The third author thanks the hospitality of the Institut de Matématiques de Bourgogne, Dijon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Potrie.

Additional information

A. G. was partially supported by NSF grant DMS-1266282; R. P. was partially supported by CSIC group 618 and the Palis Balzan project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonatti, C., Gogolev, A. & Potrie, R. Anomalous partially hyperbolic diffeomorphisms II: stably ergodic examples. Invent. math. 206, 801–836 (2016). https://doi.org/10.1007/s00222-016-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0663-7

Mathematical Subject Classification

Navigation