Skip to main content
Log in

Integrable systems, toric degenerations and Okounkov bodies

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let \(X\) be a smooth projective variety of dimension \(n\) over \(\mathbb {C}\) equipped with a very ample Hermitian line bundle \(\mathcal {L}\). In the first part of the paper, we show that if there exists a toric degeneration of \(X\) satisfying some natural hypotheses (which are satisfied in many settings), then there exists a surjective continuous map from \(X\) to the special fiber \(X_0\) which is a symplectomorphism on an open dense subset \(U\). From this we are then able to construct a completely integrable system on \(X\) in the sense of symplectic geometry. More precisely, we construct a collection of real-valued functions \(\{H_1, \ldots , H_n\}\) on \(X\) which are continuous on all of \(X\), smooth on an open dense subset \(U\) of \(X\), and pairwise Poisson-commute on \(U\). Moreover, our integrable system in fact generates a Hamiltonian torus action on \(U\). In the second part, we show that the toric degenerations arising in the theory of Newton-Okounkov bodies satisfy all the hypotheses of the first part of the paper. In this case the image of the ‘moment map’ \(\mu = (H_1, \ldots , H_n): X \rightarrow \mathbb {R}^n\) is precisely the Newton-Okounkov body \(\Delta = \Delta (R, v)\) associated to the homogeneous coordinate ring \(R\) of \(X\), and an appropriate choice of a valuation \(v\) on \(R\). Our main technical tools come from algebraic geometry, differential (Kähler) geometry, and analysis. Specifically, we use the gradient-Hamiltonian vector field, and a subtle generalization of the famous Łojasiewicz gradient inequality for real-valued analytic functions. Since our construction is valid for a large class of projective varieties \(X\), this manuscript provides a rich source of new examples of integrable systems. We discuss concrete examples, including elliptic curves, flag varieties of arbitrary connected complex reductive groups, spherical varieties, and weight varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We say that two norms \(|\cdot |_1\) and \(|\cdot |_2\) are equivalent if there exist constants \(c, C>0\) such that \(c |\cdot |_1 < |\cdot |_2 < C |\cdot |_1\).

  2. The name “Khovanskii basis” was suggested by B. Sturmfels in honor of A. G. Khovanskii’s influential contributions to combinatorial algebraic geometry.

References

  1. Alexeev, V., Brion, M.: Toric degeneration of spherical varities. Sel. Math. (N.S.) 10(4), 453–478 (2004)

  2. Anderson, D.: Okounkov bodies and toric degenerations. Math. Ann. 356(3), 1183–1202 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, D., Kuronya, A., Lozovanu, V.: Okounkov bodies of finitely generated divisors. Int. Math. Res. Not. IMRN 9, 2343–2355 (2014)

    MathSciNet  Google Scholar 

  4. Audin, M.: Spinning Tops, A Course on Integrable Systems. Cambridge Studies in Advanced Mathematics, vol. 51. Cambridge University Press, Cambridge (1996)

  5. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143(1), 77–128 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brion, M.: Sur l’image de l’application moment. Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986). Springer Lecture Notes in Mathematics, vol. 1296, pp. 177–192 (1987)

  7. Bruns, W., Gubeladze, J.: Polytopes, Rings, and K-Theory. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  8. Burns, D.: Toric Degenerations and the Exact Bohr–Sommerfeld Correspondence (2010, preprint)

  9. Caldero, P.: Toric degenerations of Schubert varieties. Transform. Groups 7(1), 51–60 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

  11. Dolgachev, I.: Weighted Projective Varieties. Group Actions and Vector Fields (Vancouver, BC, 1981), pp. 34–71. Lecture Notes in Mathematics, vol. 956. Springer, Berlin (1982)

  12. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

  13. Foth, P., Hu, Y.: Toric degeneration of weight varieties and applications. Travaux Mathématiques 16, 87–105 (2005)

    MathSciNet  Google Scholar 

  14. Gel’fand, I.M., Cetlin, M.L.: Finite dimensional representations of the group of unimodular matrices. Dokl. Akad. Nauk USSR (NS) 71, 825–828 (1950)

    MATH  MathSciNet  Google Scholar 

  15. Gonciulea, N., Lakshmibai, V.: Degenerations of flag and Schubert varieties to toric varieties. Transform. Groups 1(3), 215–248 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley, New York (1978)

    Google Scholar 

  17. Guillemin, V., Sternberg, S.: The Gel’fand–Cetlin system and quantization of the complex flag manifolds. J. Funct. Anal. 52, 106–128 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hamilton, M., Konno, H.: Convergence of Kähler to real polarizations on flag manifolds via toric degenerations. J. Symplectic Geom. 12(3), 473–509 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

  20. Hausmann, J.-C., Knutson, A.: Polygon spaces and Grassmannians. L’enseignement Mathématique 43, 173–198 (1997)

    MATH  MathSciNet  Google Scholar 

  21. Hu, J., Li, W.-P.: Theory of ordinary differential equations: existence, uniqueness and stability. Online notes. http://www.math.ust.hk/~majhu/Math4051/Notes.pdf

  22. Jeffrey, L., Weitsman, J.: Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula. Commun. Math. Phys. 150(3), 593–630 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karshon, Y., Tolman, S.: The Gromov width of complex Grassmannians. Algebr. Geom. Topol. 5, 911–922 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kaveh, K.: SAGBI bases and degeneration of spherical varieties to toric varieties. Mich. Math. J. 53(1), 109–121 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kaveh, K.: Crystal bases and Newton-Okounkov bodies. Duke Math. J. arXiv:1101.1687

  26. Kaveh, K., Khovanskii, A.: Convex bodies and algebraic equations on affine varieties. arXiv:0804.4095

  27. Kaveh, K., Khovanskii, A.: Mixed volume and an extension of intersection theory of divisors. Mosc. Math. J. 10(2), 343–375 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Kaveh, K., Khovanskii, A.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. (2) 176(2), 925–978 (2012)

  29. Kaveh, K., Khovanskii, A.: Convex bodies associated to actions of reductive groups. Mosc. Math. J. 12(2), 369–396, 461 (2012) (volume in honor of V. I. Arnold)

  30. Kogan, M., Miller, E.: Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes. Adv. Math. 193(1), 1–17 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Math Overflow posts by David Treumann and Allen Knutson, 2009 and 2010. http://mathoverflow.net/questions/2203/

  32. Kurdyka, K., Mostowski, T., Parusiński, A.: Proof of the gradient conjecture of R. Thom. Ann. Math. (2) 152(3), 763–792 (2000)

  33. Kurdyka, K., Parusinski, A.: \(w_f\)-stratification of subanalytic functions and the Łojasiewicz inequality. C. R. Acad. Sci. Paris Ser. I Math. 318(2), 129–133 (1994)

  34. Lazarsfeld, R., Mustata, M.: Convex bodies associated to linear series. Ann. Sci. Ec. Norm. Super. (4) 42(5), 783–835 (2009)

  35. Lerman, E.: Gradient flow of the norm-square of the moment map. L’Enseign. Math. (2) 51(1–2), 117–127 (2005)

  36. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Łojasiewicz, S.: Sur les trajectoires du gradient d’une fonction analytique. Geometry seminars, 1982–1983 (Bologna, 1982/1983), pp. 115–117. Univ. Stud. Bologna, Bologna (1984)

  38. Manon, C.: Toric degenerations and tropical geometry of branching algebras. arXiv:1103.2484

  39. Mumford, D.: Algebraic Geometry. I. Complex Projective Varieties. Grundlehren der Mathematischen Wissenschaften, vol. 221. Springer, Berlin (1976)

  40. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34. Springer, Berlin (1994)

  41. Nishinou, T., Nohara, Y., Ueda, K.: Toric degenerations of Gelfand–Cetlin systems and potential functions. Adv. Math. 224(2), 648–706 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Okounkov, A.: Brunn–Minkowski inequality for multiplicities. Invent. Math. 125(3), 405–411 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Okounkov, A.: A remark on the Hilbert polynomial of a spherical variety. Funct. Anal. Appl. 31, 82–85 (1997)

    Article  MathSciNet  Google Scholar 

  44. Okounkov, A.: Why would multiplicities be log-concave? The orbit method in geometry and physics (Marseille, 2000), pp. 329–347. Progress in Mathematics, vol. 213. Birkhäuser Boston, Boston (2003)

  45. Pelayo, A., Vu Ngoc, S.: Symplectic theory of completely integrable Hamiltonian systems. Bull. Am. Math. Soc. (N.S.) 48, 409–455 (2011)

  46. Ruan, W.-D.: Lagrangian Torus Fibration of Quintic Hypersurfaces. I. Fermat Quintic Case. Winter School on Mirror Symmetry. Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999). AMS/IP Studies in Advanced Mathematics, vol 23, pp. 297–332. American Mathematical Society, Providence (2001)

  47. Teissier, B.: Valuations, deformations, and toric geometry. In: Valuation Theory and Its Applications, vol. II (Saskatoon, SK, 1999), pp. 361–459. Fields Institute Communications, vol. 33. American Mathematical Society, Providence (2003)

Download references

Acknowledgments

As we were preparing this manuscript, we learned that Allen Knutson had roughly predicted our result in the MathOverflow discussion thread mentioned above. We thank Allen for encouraging us to work out these ideas carefully. We also thank Chris Manon and Dave Anderson for useful discussions. Finally, we thank the anonymous referees for useful comments which greatly improved the paper and for pointing out a short proof for Proposition 2.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiumars Kaveh.

Additional information

Dedicated to Askold Georgievich Khovanskii

M. Harada was partially supported by an NSERC Discovery Grant, an NSERC University Faculty Award, and an Ontario Ministry of Research and Innovation Early Researcher Award. K. Kaveh was partially supported by a Simons Foundation Collaboration Grants for Mathematicians and a National Science Foundation Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, M., Kaveh, K. Integrable systems, toric degenerations and Okounkov bodies. Invent. math. 202, 927–985 (2015). https://doi.org/10.1007/s00222-014-0574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0574-4

Navigation