Skip to main content
Log in

Geometry of canonical bases and mirror symmetry

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A decorated surface \(S\) is an oriented surface with boundary and a finite, possibly empty, set of special points on the boundary, considered modulo isotopy. Let \(\mathrm{G}\) be a split reductive group over \({\mathbb Q}\). A pair \((\mathrm{G}, S)\) gives rise to a moduli space \({\mathcal A}_{\mathrm{G}, S}\), closely related to the moduli space of \(\mathrm{G}\)-local systems on \(S\). It is equipped with a positive structure (Fock and Goncharov, Publ Math IHES 103:1–212, 2006). So a set \({\mathcal A}_{\mathrm{G}, S}({\mathbb Z}^t)\) of its integral tropical points is defined. We introduce a rational positive function \({\mathcal W}\) on the space \({\mathcal A}_{\mathrm{G}, S}\), called the potential. Its tropicalisation is a function \({\mathcal W}^t: {\mathcal A}_{\mathrm{G}, S}({\mathbb Z}^t) \rightarrow {\mathbb Z}\). The condition \({\mathcal W}^t\ge 0\) defines a subset of positive integral tropical points \({\mathcal A}^+_{\mathrm{G}, S}({\mathbb Z}^t)\). For \(\mathrm{G=SL}_2\), we recover the set of positive integral \({\mathcal A}\)-laminations on \(S\) from Fock and Goncharov (Publ Math IHES 103:1–212, 2006). We prove that when \(S\) is a disc with \(n\) special points on the boundary, the set \({\mathcal A}^+_{\mathrm{G}, S}({\mathbb Z}^t)\) parametrises top dimensional components of the fibers of the convolution maps. Therefore, via the geometric Satake correspondence (Lusztig, Astérisque 101–102:208–229, 1983; Ginzburg,1995; Mirkovic and Vilonen, Ann Math (2) 166(1):95–143, 2007; Beilinson and Drinfeld, Chiral algebras. American Mathematical Society Colloquium Publications, vol. 51, 2004) they provide a canonical basis in the tensor product invariants of irreducible modules of the Langlands dual group \(\mathrm{G}^L\):

$$\begin{aligned} (V_{\lambda _1}\otimes \ldots \otimes V_{\lambda _n})^{\mathrm{G}^L}. \end{aligned}$$
(1)

When \(\mathrm{G=GL}_m\), \(n=3\), there is a special coordinate system on \({\mathcal A}_{\mathrm{G}, S}\) (Fock and Goncharov, Publ Math IHES 103:1–212, 2006). We show that it identifies the set \({\mathcal A}^+_{\mathrm{GL_m}, S}({\mathbb Z}^t)\) with Knutson–Tao’s hives (Knutson and Tao, The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture, 1998). Our result generalises a theorem of Kamnitzer (Hives and the fibres of the convolution morphism, 2007), who used hives to parametrise top components of convolution varieties for \(\mathrm{G=GL}_m\), \(n=3\). For \(\mathrm{G=GL}_m\), \(n>3\), we prove Kamnitzer’s conjecture (Kamnitzer, Hives and the fibres of the convolution morphism, 2012). Our parametrisation is naturally cyclic invariant. We show that for any \(\mathrm{G}\) and \(n=3\) it agrees with Berenstein–Zelevinsky’s parametrisation (Berenstein and Zelevinsky, Invent Math 143(1):77–128, 2001), whose cyclic invariance is obscure. We define more general positive spaces with potentials \(({\mathcal A}, {\mathcal W})\), parametrising mixed configurations of flags. Using them, we define a generalization of Mirković–Vilonen cycles (Mirkovic and Vilonen, Ann Math (2) 166(1):95–143, 2007), and a canonical basis in \(V_{\lambda _1}\otimes \ldots \otimes V_{\lambda _n}\), generalizing the Mirković–Vilonen basis in \(V_{\lambda }\). Our construction comes naturally with a parametrisation of the generalised MV cycles. For the classical MV cycles it is equivalent to the one discovered by Kamnitzer (Mirkovich–Vilonen cycles and polytopes, 2005). We prove that the set \({\mathcal A}^+_{\mathrm{G}, S}({\mathbb Z}^t)\) parametrises top dimensional components of a new moduli space, surface affine Grasmannian, generalising the fibers of the convolution maps. These components are usually infinite dimensional. We define their dimension being an element of a \({\mathbb Z}\)-torsor, rather then an integer. We define a new moduli space \(\mathrm{Loc}_{G^L, S}\), which reduces to the moduli spaces of \(G^L\)-local systems on \(S\) if \(S\) has no special points. The set \({\mathcal A}^+_{\mathrm{G}, S}({\mathbb Z}^t)\) parametrises a basis in the linear space of regular functions on \(\mathrm{Loc}_{G^L, S}\). We suggest that the potential \({\mathcal W}\) itself, not only its tropicalization, is important—it should be viewed as the potential for a Landau–Ginzburg model on \({\mathcal A}_{\mathrm{G}, S}\). We conjecture that the pair \(({\mathcal A}_{\mathrm{G}, S}, {\mathcal W})\) is the mirror dual to \(\mathrm{Loc}_{G^L, S}\). In a special case, we recover Givental’s description of the quantum cohomology connection for flag varieties and its generalisation (Gerasimov et al., New integral representations of Whittaker functions for classical Lie groups, 2012; Rietsch, A mirror symmetric solution to the quantum Toda lattice, 2012). We formulate equivariant homological mirror symmetry conjectures parallel to our parametrisations of canonical bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

Notes

  1. Inspite of the name, it is not an affine variety.

  2. We would like to stress that the positive structures and potentials on configuration spaces which we employ for parametrization of canonical bases do not depend on any extra choices, like pinning etc., in the group. See Sect. 6.3.

  3. Indeed, \(\omega _i({\alpha }(\mathrm{A}_1, \mathrm{A}_2))=0\) if and only if the corresponding pair of flags belongs to the codimension one \(\mathrm{G}\)-orbit corresponding to a simple reflection \(s_i\).

  4. Indeed, it follows from Lemma 11.3 and an explicit description of cluster structure on \(\mathrm{Conf}_n({\mathcal A})\) that the form \(\Omega _{\mathcal A}\) can not have non-zero residues anywhere else the divisors \(D^E_i\). One can show that the residues at these divisors are non-zero.

  5. The set \({\mathcal Y}({\mathbb Z}^t)\), the tropicalization \({\mathcal W}^t\), and thus the subset \({\mathcal Y}^+_{\mathcal W}({\mathbb Z}^t)\) can also be determined by the volume form \(\Omega _{\mathcal Y}\), without using the positive structure on \({\mathcal Y}\).

  6. Laminations on decorated surfaces were investigated in [17, Section 12], and [19]. However the two types of laminations considered there, the \({\mathcal A}\)- and \({\mathcal X}\)-laminations, are different then the ones in Definition 1.3. Indeed, they parametrise canonical bases in \({\mathcal O}({\mathcal X}_{PGL_2, S})\) and, respectively, \({\mathcal O}({\mathcal A}_{SL_2, S})\), while the latter parametrise a canonical basis in \({\mathcal O}(\mathrm{Loc}_{SL_2, S})\). Notice that a lamination in Definition 1.3 can not end on a boundary circle.

  7. In our main examples the symplectic structure is exact, \(\omega = d\alpha \). So averaging the form \(\alpha \) by the action of the compact group \({\mathbb T}_K\) we can assume that it is \({\mathbb T}_K\)-invariant. Therefore the action is Hamiltonian: the Hamiltonian at \(x\) for a one parametric subgroup \(g^t\) is given by the formula \(\alpha (\frac{d}{dt}g^t(x))\).

  8. Although the claim (39) is not addressed in the paper, it can be deduced from (38).

  9. By abuse of notation, such a cell will always be denoted by \({\mathcal C}_l^\circ \). The tropical point \(l\) tells which space it lives.

  10. Here is a non-archimedean analog: A generic pair of flags \(\{\mathrm{B}_1, \mathrm{B}_2\}\) over \({\mathcal K}\) gives rise to an \(H({\mathcal K})/H({\mathcal O})\)-torsor in the affine Grassmannian—the projection of \(\mathrm{B}_1({\mathcal K})\cap \mathrm{B}_2({\mathcal K})\) to \(\mathrm{G}({\mathcal K})/\mathrm{G}({\mathcal O})\).

  11. In the archimedean case, a maximal compact subgroup \(\mathrm{K}\) is defined by using the Cartan involution. A generic pair \(\{\mathrm{A}, \mathrm{B}\}\) determines a pinning, and hence a Cartan involution.

  12. Every transcendental point \(C\in \mathrm{T}^{\circ }_l\) automatically satisfies such conditions.

  13. There is a positive Cartan group action on \(\mathrm{Conf}_3({\mathcal A})({\mathbb Z}^t)\) defined via

    $$\begin{aligned} \mathrm{H}\times \mathrm{Conf}_3({\mathcal A})\longrightarrow \mathrm{Conf}_3({\mathcal A}), \quad \quad h\times (\mathrm{A}_1, \mathrm{A}_2, \mathrm{A}_3)\longmapsto (\mathrm{A}_1, \mathrm{A}_2, \mathrm{A}_3\cdot h). \end{aligned}$$

    Its tropicalization determines a free \(\mathrm{H}({\mathbb Z}^t)\)-action on \(\mathrm{Conf}_3({\mathcal A})({\mathbb Z}^t)\). By definition, one can thus identify the \(\mathrm{H}({\mathbb Z}^t)\)-orbits of \(\mathrm{Conf}_3({\mathcal A})({\mathbb Z}^t)\) with points of \(\mathrm{Conf}({\mathcal A},{\mathcal A}, {\mathcal B})({\mathbb Z}^t)\). Note that each element in \(\mathbf{B}_{\lambda _1}^{\mu -\lambda _2}\) has a unique representative in \(\widetilde{\mathbf{B}}_{\lambda _1,\lambda _2}^{\mu }\). Hence the map \(\pi _3^t\) is a bijection.

  14. If the vertices of \(t\) coincide, one can first pull back to a sufficient big cover \(\widetilde{S}\) of \(S\), and then consider the restriction to a triangle \(\widetilde{t}\subset \widetilde{S}\) which projects onto \(t\). Clearly the result is independent of the pair \(\widetilde{t}\subset \widetilde{S}\) chosen.

  15. Although the decorated surface \(*S\) is isomorphic to \(S\), the isomorphism is not quite canonical.

  16. Taking the quotient by a unipotent group does not affect the category of equivariant sheaves. This is why we require the prounipotence condition here.

References

  1. Abouzaid, M.: A topological model for the Fukaya categories of plumbings. J. Differential Geom. 87(1), 1–80 (2011). arXiv:0904.1474

  2. Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14(2), 627–718 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, J.E.: A polytope calculus for semisimple groups. Duke Math. J. 116(3), 567–588 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Auroux, D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. 1, 51–91 (2007). arXiv:0706.3207

  5. Auroux, D.: Special Lagrangian fibrations, wall-crossing, and mirror symmetry. In: Cao, H.D., Yau, S.T. (eds.) Surveys in Differential Geometry, vol. 13. International Press, Somerville, MA (2009). arXiv:0902.1595

  6. Batyrev, V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3(3), 493–535 (1994). arXiv:alg-geom/9310003

  7. Braden, T.: Hyperbolic localization of intersection cohomology. Transform. Groups 8(3), 209–216 (2003). arXiv:math/020225

  8. Beilinson, A.A., Deligne, J., Bernstein, P.: Faisceaux pervers. Asterisque 100, 5–171 (1982)

    MathSciNet  Google Scholar 

  9. Beilinson, A.A., Drinfeld, V.: Chiral algebras. American Mathemat ical Society Colloquium Publications, vol. 51. American Mathematical Society, Providence (2004)

  10. Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals, GAFA (Tel Aviv, 1999). Geom. Funct. Anal. 2000. Special Volume, Part I, pp. 188–236 (2000). arXiv:math/9912105

  11. Berenstein A., Kazhdan D.: Geometric and unipotent crystals II: from unipotent bicrystals to crystal bases, Contemp. Math., vol. 433, pp. 13–88. Amer. Math. Soc., Providence (2007). arXiv:math/0601391

  12. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive matrices. Invent. Math. 143(1), 77–128 (2001). arXiv:math.RT/9912012

  13. Braverman, A., Gaitsgory, D.: Crystals via the affine Grassmannian. Duke Math. J. 107(3), 561–575 (2001). arXiv:math/9909077

  14. De Concini, C., Kazhdan, D.: Special bases for \(S_N\) and \(GL(n)\). Isr. J. Math. 40(3–4), 275–290 (1981)

    Article  MATH  Google Scholar 

  15. Dyckerhoff, T., Kapranov, M.: Triangulated surfaces in triangulated categories (2013). arXiv:1306.2545

  16. Eguchi, T., Hori, K., Xiong, C.-S.: Gravitational quantum cohomology. Int. J. Mod. Phys. A12, 1743–1782 (1997). arXiv:hep-th/9605225

    Article  MathSciNet  Google Scholar 

  17. Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. IHES, n. 103, 1–212 (2006). arXiv:math.AG/0311149

  18. Fock, V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. L’Ecole Norm. Sup. (2009). arXiv:math.AG/0311245

  19. Fock, V.V., Goncharov, A.B.: Dual Teichmuller and lamination spaces. In: Papadopoulos, A (ed.) Handbook of Teichmüller theory. IRMA Lectures in Mathematics and Theoretical Physics 11, vol. I, pp. 647–684. European Mathematical Society, Zürich (2007). arXiv:math/0510312

  20. Fock, V.V., Goncharov, A.B.: Cluster \({X}\)-varieties at infinity. To appear in Moscow Math. J arXiv:1104.0407

  21. Fock, V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175, 223–286 (2009). arXiv:math/0702397

  22. Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. JAMS 12(2), 335–380 (1999). arXiv:math.RT/9802056

  23. Fomin, S., Zelevinsky, A.: Cluster algebras. I. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Frenkel, I., Khovanov, M.L Canonical bases in tensor products and graphical calculus for \(U_q(sl_2)\). Duke Math. J. 87(3), 409–480 (1997)

  25. Gaussent, S.: The fibre of the Bott–Samelson resolution. Indag. Math. N. S. 12(4), 453–468 (2001)

  26. Gaussent, S.: Corrections and new results on the fiber of the Bott–Samelson resolution. Indag. Math. N.S. 14(1), 31–33 (2003)

  27. Gelfand, I.M., Zelevinsky, A.: Multiplicities and proper bases for \(GL_n\). Group Theor Methods Phys. 2, 147–159 (1985)

    Google Scholar 

  28. Gelfand, I.M., Tsetlin, M.: Finite dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR 71, 825–828 (1950)

    MathSciNet  Google Scholar 

  29. Gelfand, I.M., Tsetlin, M.: Finite dimensional representations of the group of orthogonal matrices. Doklady Akad. Nauk SSSR 71, 1017–1020 (1950)

    MathSciNet  Google Scholar 

  30. Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a Gauss–Givental representation of quantum Toda chain wave function, Int. Math. Res. Notices (2006)

  31. Gerasimov, A., Lebedev, D., Oblezin, S.: Givental integral representation for classical groups (2006). arXiv:math/0608152

  32. Gerasimov, A., Lebedev, D., Oblezin, S.: New integral representations of Whittaker functions for classical Lie groups. In: Russian Mathematical Surveys, vol. 67, no. 1, pp. 1–92 (2012). arXiv:0705.2886G

  33. Gerasimov, A., Lebedev, D., Oblezin, S.: Parabolic Whittaker functions and topological field theories I. Commun. Number Theory Phys. 5(1), 135–201 (2011). arXiv:1002.2622G

  34. Ginzburg, V.: Perverse sheaves on a loop group and Langlands duality (1995). arXiv:alg-geom/9511007

  35. Givental, A.: Homological geometry and mirror symmetry. Proc. ICM-94, Zürich, pp. 374–387 (1994)

  36. Givental, A., Kim, B.: Quantum cohomology of flag manifolds and Toda lattices. Commun. Math. Phys. 168(3), 609–641 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. In: Topics in singularity theory. American Mathematical Society translations, vol. 180, pp. 103–115. American Mathematical Society, Providence, RI (1997). arXiv:alg-geom/9612001

  38. Givental, A., Lee, Y.-P.: Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups . Invent. Math. 151(1), 193–219 (2003). arXiv:math/0108105

  39. Goncharov, A.B., Shen, L.: Geometry of canonical bases and mirror symmetry (2013). arXiv:1309.5922

  40. Gross, M., Hacking P., Keel S.: Mirror symmetry for log Calabi–Yau surfaces I (2013). arXiv:1106.4977

  41. Gross, M., Hacking P., Keel S.: Birational geometry of cluster algebras (2013). arXiv:1309.2573

  42. Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program . In: Current developments in mathematics, pp. 35–180. Int. Press, Somerville, MA (2008). arXiv:hep-th/0612073

  43. Hori, K., Vafa, C.: Mirror symmetry (2003). arXiv:hep-th/0002222

  44. Joseph, A.: Quantum Groups and Their Primitive Ideals. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  45. Kamnitzer, J.: Mirkovich–Vilonen cycles and polytopes. Ann. Math. 171(1), 245–294 (2010). arXiv:math/0501365

  46. Kamnitzer, J.: Hives and the fibres of the convolution morphism. Selecta Math. (N.S.) 13(3), 483–496 (2007). arXiv:0705.1698

  47. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69(2), 455–485 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007). arXiv:hep-th/0604151

  49. Kontsevich, M.: Symplectic geometry of homological algebra. Arbeitstagung (2007)

  50. Kontsevich, M.: Symplectic geometry of homological algebra. A talk at Arbeitstagung, Bonn. http://www.ihes.fr/~maxim/publicationsanglais.html (2009)

  51. Kontsevich, M.: Talk at the Gelfand 100 conference at MIT (2013)

  52. Kontsevich, M., Soibelman, Y.: Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry (2013). arXiv:1303.3253

  53. Kostant, B.: Quantization and representation theory. Representation theory of Lie Groups. London Math. Soc. Lecture Notes, vol. 34, pp. 287–316 (1977)

  54. Knutson, A., Tao, T.: The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture (1998). arXiv:math/9807160

  55. Knutson, A., Tao, T., Woodward, Ch.: A positive proof of the Littlewood–Richardson rule using the octahedron recurrence. Electron. J. Combin. 11 (2004). arXiv:math/0306274

  56. Lam, Th.: Whittaker functions, geometric crystals, and quantum Schubert calculus (2013). arXiv:1308.5451

  57. Le, I.: Higher laminations and affine buildings (2013). arXiv:1209.0812

  58. Lusztig, G.: Total posistivity in reductive groups. Lie Theory and Geometry. In Honor of B. Kostant, Progr. in Math., vol. 123, pp. 531–568. Birkhauser, Basel (1994)

  59. Lusztig, G.: Canonical basis arising from quantum canonical algebras. JAMS 3(2), 447–498 (1990)

    MATH  MathSciNet  Google Scholar 

  60. Lusztig, G.: An algebraic geometric parametrisation of the canonical basis. Adv. Math. 120, 172–190 (1996)

    Article  MathSciNet  Google Scholar 

  61. Lusztig, G.: Canonical bases in tensor products. Proc. Natl. Acad. Sci. USA 89(17), 8177–8179 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  62. Lusztig, G.: Singularities, character formulas and a q-analog of weight multipicities. Astérisque 101–102, 208–229 (1983)

    MathSciNet  Google Scholar 

  63. Malkin, A.: Tensor product varieties and crystals: the ADE case. Duke Math. J. 116(3), 477–524 (2003). arXiv:0103025

  64. Marsh, R., Rietsch K.: The B-model connection and mirror symmetry for Grassmannians (2013). arXiv:1307.1085

  65. Mirkovic, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1), 95–143 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. Nakajima, H.: Quiver varieties and tensor products. Invent. Math. 146(2), 399–449 (2001). arXiv:math.QA/0103008

  67. Nakajima, H.: Geometric construction of representations of affine algebras. In: Proceedings of the International Congress of Mathematicians, Beijing, vol. I, 423438. Higher Ed. Press, Beijing (2002). arXiv:math/0212401

  68. Retakh, V., Zelevinsky, A.: The fundamental affine space and canonical basis in irreducible representations of the group \(Sp_4\). Doklady AN SSSR 300(1), 31–35 (1988)

    MathSciNet  Google Scholar 

  69. Rietsch, K.: A mirror symmetric construction of \(qH_T(G/P)_{(q)}\). Adv. Math. 217(6), 2401–2442 (2008). arXiv:math/0511124

    Article  MATH  MathSciNet  Google Scholar 

  70. Rietsch, K.: A mirror symmetric solution to the quantum Toda lattice. Comm. Math. Phys. 309(1), 23–49 (2012). arXiv:0705.3202

  71. Seidel, P.: Graded Lagrangian submanifolds. Bull. Soc. Math. Fr. 128, 103–149 (2000)

    MATH  MathSciNet  Google Scholar 

  72. Seidel, P.: Fukaya categories and Picard–Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zrich (2008)

  73. Sibilla, N., Treumann, D., Zaslow, E.: Ribbon graphs and mirror symmetry I . Selecta Math. (N.S.) 20(4), 979–1002 (2014). arXiv:1103.2462

  74. Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003). arXiv:math.AG/0205236

  75. Teleman, C.: Gauge theory and mirror symmetry. ICM, Seoul (2014). arXiv:1404.6305

  76. Witten, E.: Two dimensional gravity and intersection theory on moduli spaces. Surveys Differ. Geom. 1, 243–310 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF grants DMS-1059129 and DMS-1301776. A.G. is grateful to IHES and Max Planck Institute fur Mathematic (Bonn) for the support. We are grateful to Mohammed Abouzaid, Joseph Bernstein, Alexander Braverman, Vladimir Fock, Alexander Givental, David Kazhdan, Joel Kamnitzer, Sean Keel, Ivan Mirkovic, and Sergey Oblezin for many useful discussions. We are especially grateful to Maxim Kontsevich for fruitful conversations on mirror symmetry during the Summer of 2013 in IHES. We are very grateful to the referee for many fruitful comments, remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Goncharov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, A., Shen, L. Geometry of canonical bases and mirror symmetry. Invent. math. 202, 487–633 (2015). https://doi.org/10.1007/s00222-014-0568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0568-2

Navigation