Skip to main content
Log in

Cutoff for the Ising model on the lattice

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Introduced in 1963, Glauber dynamics is one of the most practiced and extensively studied methods for sampling the Ising model on lattices. It is well known that at high temperatures, the time it takes this chain to mix in L 1 on a system of size n is O(logn). Whether in this regime there is cutoff, i.e. a sharp transition in the L 1-convergence to equilibrium, is a fundamental open problem: If so, as conjectured by Peres, it would imply that mixing occurs abruptly at (c+o(1))logn for some fixed c>0, thus providing a rigorous stopping rule for this MCMC sampler. However, obtaining the precise asymptotics of the mixing and proving cutoff can be extremely challenging even for fairly simple Markov chains. Already for the one-dimensional Ising model, showing cutoff is a longstanding open problem.

We settle the above by establishing cutoff and its location at the high temperature regime of the Ising model on the lattice with periodic boundary conditions. Our results hold for any dimension and at any temperature where there is strong spatial mixing: For ℤ2 this carries all the way to the critical temperature. Specifically, for fixed d≥1, the continuous-time Glauber dynamics for the Ising model on (ℤ/nℤ)d with periodic boundary conditions has cutoff at (d/2λ )logn, where λ is the spectral gap of the dynamics on the infinite-volume lattice. To our knowledge, this is the first time where cutoff is shown for a Markov chain where even understanding its stationary distribution is limited.

The proof hinges on a new technique for translating L 1-mixing to L 2-mixing of projections of the chain, which enables the application of logarithmic-Sobolev inequalities. The technique is general and carries to other monotone and anti-monotone spin-systems, e.g. gas hard-core, Potts, anti-ferromagentic Ising, arbitrary boundary conditions, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aizenman, M., Holley, R.: Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Shlosman regime. In: Percolation Theory and Ergodic Theory of Infinite Particle Systems. IMA Math. Appl., vol. 8, pp. 1–11. Springer, New York (1987)

    Chapter  Google Scholar 

  2. Aldous, D.: Random walks on finite groups and rapidly mixing Markov chains. In: Seminar on Probability, vol. XVII, pp. 243–297 (1983)

    Google Scholar 

  3. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs. In preparation, http://www.stat.berkeley.edu/~aldous/RWG/book.html

  4. Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Am. Math. Mon. 93, 333–348 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cesi, F.: Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields. Probab. Theory Relat. Fields 120(4), 569–584 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G.-Y., Saloff-Coste, L.: The cutoff phenomenon for ergodic Markov processes. Electron. J. Probab. 13, 26–78 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diaconis, P.: The cutoff phenomenon in finite Markov chains. Proc. Natl. Acad. Sci. USA 93(4), 1659–1664 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diaconis, P., Saloff-Coste, L.: Comparison techniques for random walk on finite groups. Ann. Probab. 21(4), 2131–2156 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diaconis, P., Saloff-Coste, L.: Comparison theorems for reversible Markov chains. Ann. Appl. Probab. 3(3), 696–730 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diaconis, P., Saloff-Coste, L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6(3), 695–750 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diaconis, P., Saloff-Coste, L.: Nash inequalities for finite Markov chains. J. Theor. Probab. 9(2), 459–510 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diaconis, P., Saloff-Coste, L.: Separation cut-offs for birth and death chains. Ann. Appl. Probab. 16(4), 2098–2122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diaconis, P., Shahshahani, M.: Generating a random permutation with random transpositions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57(2), 159–179 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, J., Lubetzky, E., Peres, Y.: The mixing time evolution of Glauber dynamics for the mean-field Ising model. Commun. Math. Phys. 289(2), 725–764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, J., Lubetzky, E., Peres, Y.: Total-variation cutoff in birth-and-death chains. Probab. Theory Relat. Fields 146(1), 61–85 (2010)

    Article  MathSciNet  Google Scholar 

  16. Dobrushin, R.L., Shlosman, S.B.: Completely analytical interactions: constructive description. J. Stat. Phys. 46(5–6), 983–1014 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294–307 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guionnet, A., Zegarlinski, B.: Decay to equilibrium in random spin systems on a lattice. Commun. Math. Phys. 181(3), 703–732 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hayes, T.P., Sinclair, A.: A general lower bound for mixing of single-site dynamics on graphs. In: 46th Annual IEEE Symposium on Foundations of Computer Science, 2005. FOCS 2005, pp. 511–520 (2005)

    Google Scholar 

  20. Holley, R.A.: On the asymptotics of the spin-spin autocorrelation function in stochastic Ising models near the critical temperature. In: Spatial Stochastic Processes. Progr. Probab., vol. 19, pp. 89–104. Birkhäuser, Boston (1991)

    Chapter  Google Scholar 

  21. Holley, R.A., Stroock, D.W.: Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46(5–6), 1159–1194 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holley, R.A., Stroock, D.W.: Uniform and L 2 convergence in one-dimensional stochastic Ising models. Commun. Math. Phys. 123(1), 85–93 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levin, D.A., Luczak, M., Peres, Y.: Glauber dynamics for the Mean-field Ising Model: cut-off, critical power law, and metastability. Probab. Theory Relat. Fields 146(1–2), 223–265 (2010)

    Article  MathSciNet  Google Scholar 

  24. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. AMS, Providence (2009), xviii+371 pp.

    MATH  Google Scholar 

  25. Liggett, T.M.: Interacting Particle Systems. Classics in Mathematics. Springer, Berlin (2005). Reprint of the 1985 original

    MATH  Google Scholar 

  26. Lu, S.L., Yau, H.-T.: Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys. 156(2), 399–433 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lubetzky, E., Sly, A.: Cutoff for general spin systems with arbitrary boundary conditions. Preprint

  28. Lubetzky, E., Sly, A.: Cutoff phenomena for random walks on random regular graphs. Duke Math. J. 153(3), 475–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. In: Lectures on Probability Theory and Statistics, Saint-Flour, 1997. Lecture Notes in Math., vol. 1717, pp. 93–191. Springer, Berlin (1999)

    Chapter  Google Scholar 

  30. Martinelli, F.: Relaxation times of Markov chains in statistical mechanics and combinatorial structures. In: Probability on Discrete Structures. Encyclopaedia Math. Sci., vol. 110, pp. 175–262. Springer, Berlin (2004)

    Chapter  Google Scholar 

  31. Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case. Commun. Math. Phys. 161(3), 447–486 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region. II. The general case. Commun. Math. Phys. 161(3), 487–514 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Martinelli, F., Olivieri, E., Schonmann, R.H.: For 2-D lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165(1), 33–47 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Saloff-Coste, L.: Lectures on finite Markov chains. In: Lectures on Probability Theory and Statistics, Saint-Flour, 1996. Lecture Notes in Math., vol. 1665, pp. 301–413. Springer, Berlin (1997)

    Chapter  Google Scholar 

  35. Saloff-Coste, L.: Random walks on finite groups. In: Probability on Discrete Structures, pp. 263–346 (2004)

    Chapter  Google Scholar 

  36. Stroock, D.W., Zegarliński, B.: The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition. Commun. Math. Phys. 144(2), 303–323 (1992)

    Article  MATH  Google Scholar 

  37. Stroock, D.W., Zegarliński, B.: The logarithmic Sobolev inequality for continuous spin systems on a lattice. J. Funct. Anal. 104(2), 299–326 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stroock, D.W., Zegarliński, B.: The logarithmic Sobolev inequality for discrete spin systems on a lattice. Commun. Math. Phys. 149(1), 175–193 (1992)

    Article  MATH  Google Scholar 

  39. Zegarliński, B.: Dobrushin uniqueness theorem and logarithmic Sobolev inequalities. J. Funct. Anal. 105(1), 77–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zegarliński, B.: On log-Sobolev inequalities for infinite lattice systems. Lett. Math. Phys. 20(3), 173–182 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Lubetzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubetzky, E., Sly, A. Cutoff for the Ising model on the lattice. Invent. math. 191, 719–755 (2013). https://doi.org/10.1007/s00222-012-0404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0404-5

Keywords

Navigation