Skip to main content
Log in

Lower bounds on Ricci curvature and quantitative behavior of singular sets

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let Y n denote the Gromov-Hausdorff limit \(M^{n}_{i}\stackrel{d_{\mathrm{GH}}}{\longrightarrow} Y^{n}\) of v-noncollapsed Riemannian manifolds with \({\mathrm{Ric}}_{M^{n}_{i}}\geq-(n-1)\). The singular set \(\mathcal {S}\subset Y\) has a stratification \(\mathcal {S}^{0}\subset \mathcal {S}^{1}\subset\cdots\subset \mathcal {S}\), where \(y\in \mathcal {S}^{k}\) if no tangent cone at y splits off a factor ℝk+1 isometrically. Here, we define for all η>0, 0<r≤1, the k-th effective singular stratum \(\mathcal {S}^{k}_{\eta,r}\) satisfying \(\bigcup_{\eta}\bigcap_{r} \,\mathcal {S}^{k}_{\eta,r}= \mathcal {S}^{k}\). Sharpening the known Hausdorff dimension bound \(\dim\, \mathcal {S}^{k}\leq k\), we prove that for all y, the volume of the r-tubular neighborhood of \(\mathcal {S}^{k}_{\eta,r}\) satisfies \({\mathrm {Vol}}(T_{r}(\mathcal {S}^{k}_{\eta,r})\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},\eta)r^{n-k-\eta}\). The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let \(\mathcal {B}_{r}\) denote the set of points at which the C 2-harmonic radius is ≤r. If also the \(M^{n}_{i}\) are Kähler-Einstein with L 2 curvature bound, \(\| Rm\|_{L_{2}}\leq C\), then \({\mathrm {Vol}}( \mathcal {B}_{r}\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},C)r^{4}\) for all y. In the Kähler-Einstein case, without assuming any integral curvature bound on the \(M^{n}_{i}\), we obtain a slightly weaker volume bound on \(\mathcal {B}_{r}\) which yields an a priori L p curvature bound for all p<2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.T.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102(2), 429–445 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144(1), 189–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Cheeger, J., Colding, T.H., Tian, G.: On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12(5), 873–914 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X.-X., Donaldson, S.: Volume estimates for Kähler Einstein metrics and rigidity of complex structures (2011). arXiv:1104.4331v1 [math]

  6. Chen, X.-X., Donaldson, S.: Volume estimates for Kähler Einstein metrics: the three dimensional case (2011). arXiv:1104.0270v2 [math]

  7. Cheeger, J.: Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal. 13(1), 20–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheeger, J., Kleiner, B., Naor, A.: Compression bounds for Lipschitz maps from the Heisenberg group to L 1. Acta Math. 207(2), 291–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Naber, A.: Quantitative stratification and the regularity of harmonic maps and minimal currents. Commun. Pure Appl. Math. (2011, to appear). arXiv:1107.1197 [math]

  10. Chakrabarti, D., Shaw, M.-C.: The Cauchy-Riemann equations on product domains. Math. Ann. 349, 977–998 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Cheeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheeger, J., Naber, A. Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent. math. 191, 321–339 (2013). https://doi.org/10.1007/s00222-012-0394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0394-3

Keywords

Navigation