Skip to main content
Log in

Variation of Iwasawa invariants in Hida families

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Carayol, H.: Sur les représentations l-adiques associées aux formes modulaires de Hilbert. Ann. Sci. Éc. Norm. Supér., IV. Sér. 19, 409–468 (1986)

    MATH  MathSciNet  Google Scholar 

  2. Carayol, H.: Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet. p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, pp. 213–237. Providence, RI: Am. Math. Soc. 1994

  3. Darmon, H., Diamond, F., Taylor, R.: Fermat’s last theorem. Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993), pp. 2–140. Cambridge, MA: Internat. Press 1997

  4. Diamond, F.: On congruence modules associated to Λ-adic forms. Compos. Math. 71, 49–83 (1989)

    MATH  MathSciNet  Google Scholar 

  5. Diamond, F.: The refined conjecture of Serre. Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993). Ser. Number Theory, I, pp. 22–37. Cambridge, MA: Internat. Press 1995

  6. Diamond, F.: On deformation rings and Hecke rings. Ann. Math. (2) 144, 137–166 (1996)

    Google Scholar 

  7. Diamond, F., Ribet, K.A.: l-adic modular deformations and Wiles’s “main conjecture”. Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 357–371. New York: Springer 1997

  8. Diamond, F., Taylor, R.: Nonoptimal levels of mod l modular representations. Invent. Math. 115, 435–462 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Diamond, F., Taylor, R.: Lifting modular mod l representations. Duke Math. J. 74, 253–269 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Greenberg, R.: Iwasawa theory for p-adic representations. Algebraic number theory, Adv. Stud. Pure Math., vol. 17, pp. 97–137. Boston, MA: Academic Press 1989

  11. Greenberg, R.: Iwasawa theory for motives. In L-functions and arithmetic (Durham, 1989), pp. 211–233. Cambridge: Cambridge Univ. Press 1991

  12. Greenberg, R.: Iwasawa theory and p-adic deformations of motives. Motives (Seattle, WA, 1991). Proc. Symp. Pure Math., vol. 55, pp. 193–223. Providence, RI: Am. Math. Soc. 1994

  13. Greenberg, R.: Iwasawa theory for elliptic curves. Arithmetic theory of elliptic curves (Cetraro, 1997). Lect. Notes Math., vol. 1716, pp. 51–144. Berlin: Springer 1999

  14. Greenberg, R., Stevens, G.: p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111, 407–447 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Greenberg, R., Vatsal, V.: On the Iwasawa invariants of elliptic curves. Invent. Math. 142, 17–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gross, B.: A tameness criterion for Galois representations associated to modular forms (mod p). Duke Math. J. 61, 445–517 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hida, H.: Galois representations into GL2(Z p [[X]]) attached to ordinary cusp forms. Invent. Math. 85, 545–613 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hida, H.: Iwasawa modules attached to congruences of cusp forms. Ann. Sci. Éc. Norm. Supér., IV. Sér. 19, 231–273 (1986)

    MATH  MathSciNet  Google Scholar 

  19. Hida, H.: Modules of congruence of Hecke algebras and L-functions associated with cusp forms. Am. J. Math. 110, 323–382 (1988)

    MATH  MathSciNet  Google Scholar 

  20. Kato, K.: p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithmétiques. III. Astérisque 295, 117–290 (2004)

    MATH  Google Scholar 

  21. Katz, N.: Higher congruences between modular forms. Ann. Math. (2) 101, 332–367 (1975)

    Google Scholar 

  22. Kitigawa, K.: On standard p-adic L-functions of families of elliptic curves. In: p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991). Contemp. Math., vol. 165, pp. 81–110. Providence, RI: Am. Math. Soc. 1994

  23. Livné, R.: On the conductors of mod l Galois representations coming from modular forms. J. Number Theory 31, 133–141 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Matsumura, H.: Commutative ring theory, second edn. Cambridge Studies in Advanced Mathematics, vol. 8. Translated from the Japanese by M. Reid. Cambridge: Cambridge University Press 1989

  25. Mazur, B.: On the arithmetic of special values of L-functions. Invent. Math. 55, 207–240 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mazur, B.: Euler systems in arithmetic geometry. Notes from a course at Harvard University (1998), available at http://www.math.amherst.edu/∼taweston

  27. Mazur, B.: The theme of p-adic variation. Mathematics: frontiers and perspectives, pp. 433–459. Providence, RI: Am. Math. Soc. 2000

  28. Mazur, B.: Two-variable p-adic L-functions. Unpublished notes

  29. Mazur, B.: An introduction to the deformation theory of Galois representations. In: Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 243–311. New York: Springer 1997

  30. Ochiai, T.: On the two-variable Iwasawa main conjecture for Hida deformations. In preparation

  31. Panchishkin, A.: Two-variable p-adic L-functions attached to eigenfamilies of positive slope. Invent. Math. 154, 551–615 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Stein, W.: The modular forms explorer. http://modular.fas.harvard.edu/mfd/mfe/

  33. Stevens, G.: Families of overconvergent modular symbols. Preprint

  34. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141, 553–572 (1995)

    Google Scholar 

  35. Vatsal, V.: Canonical periods and congruence formulae Duke Math. J. 98, 397–419 (1999)

    MATH  MathSciNet  Google Scholar 

  36. Weston, T.: Iwasawa invariants of Galois deformations. Manuscr. Math. 118, 161–180 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141, 443–551 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew Emerton, Robert Pollack or Tom Weston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerton, M., Pollack, R. & Weston, T. Variation of Iwasawa invariants in Hida families. Invent. math. 163, 523–580 (2006). https://doi.org/10.1007/s00222-005-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-005-0467-7

Keywords

Navigation