Skip to main content

Advertisement

Log in

Dihydrolipoamide dehydrogenase suppression induces human tau phosphorylation by increasing whole body glucose levels in a C. elegans model of Alzheimer’s Disease

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The microtubule associated tau protein becomes hyperphosphorylated in Alzheimer’s disease (AD). While hyperphosphorylation promotes neurodegeneration, the cause and consequences of this abnormal modification are poorly understood. As impaired energy metabolism is an important hallmark of AD progression, we tested whether it could trigger phosphorylation of human tau protein in a transgenic Caenorhabditis elegans model of AD. We found that inhibition of a mitochondrial enzyme of energy metabolism, dihydrolipoamide dehydrogenase (DLD) results in elevated whole-body glucose levels as well as increased phosphorylation of tau. Hyperglycemia and tau phosphorylation were induced by either RNAi suppression of the dld-1 gene or by inhibition of the DLD enzyme by the inhibitor, 2-methoxyindole-2-carboxylic acid (MICA). Although the calcium ionophore A23187 could reduce tau phosphorylation induced by either chemical or genetic suppression of DLD, it was unable to reduce tau phosphorylation induced by hyperglycemia. While inhibition of the dld-1 gene or treatment with MICA partially reversed the inhibition of acetylcholine neurotransmission by tau, neither treatment affected tau inhibited mobility. Conclusively, any abnormalities in energy metabolism were found to significantly affect the AD disease pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnes K, Shu-Hui C, Yen (1993) The extent of phosphorylation of fetal tau is comparable to that of PHF-tau from Alzheimer paired helical filaments. Brain Res 26(629):40–46

    Google Scholar 

  • Ahmad W (2013) Overlapped metabolic and therapeutic links between Alzheimer and diabetes. Mol Neurobiol 47(1):399–424. https://doi.org/10.1007/s12035-012-8352-z

    Article  CAS  PubMed  Google Scholar 

  • Ahmad W, Ebert PR (2016) Metformin attenuates abeta pathology mediated through levamisole sensitive nicotinic acetylcholine receptors in a C. elegans model of Alzheimer’s disease. Mol Neurobiol 54(7):5427–5439. https://doi.org/10.1007/s12035-016-0085-y

    Article  CAS  PubMed  Google Scholar 

  • Ahmad W, Ebert PR (2018a) 5-Methoxyindole-2-carboxylic acid (MICA) suppresses Abeta-mediated pathology in C. elegans. Exp Gerontol 108:215–225. https://doi.org/10.1016/j.exger.2018.04.021

    Article  CAS  PubMed  Google Scholar 

  • Ahmad W, Ebert PR (2018b) Suppression of the dihydrolipoamide dehydrogenase gene (dld-1) protects against the toxicity of human amyloid beta in C. elegans model of Alzheimer’s disease. bioRxiv 228429

  • Ahmad W et al (2011a) Serine 204 phosphorylation and O-beta-GlcNAC interplay of IGFBP-6 as therapeutic indicator to regulate IGF-II functions in viral mediated hepatocellular carcinoma. Virol J 8:208

    Article  CAS  Google Scholar 

  • Ahmad W et al (2011b) Claudin-1 required for HCV virus entry has high potential for phosphorylation and O-glycosylation. Virol J 8:229

    Article  CAS  Google Scholar 

  • Ahmad W et al (2011c) Human linker histones: interplay between phosphorylation and O-beta-GlcNAc to mediate chromatin structural modifications. Cell Div 6:15

    Article  CAS  Google Scholar 

  • Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S (2017) Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/RNS generation. J Biomed Sci 24(1):76

    Article  Google Scholar 

  • Asuni AA, Perry VH, O’Connor V (2010) Change in tau phosphorylation associated with neurodegeneration in the ME7 model of prion disease. Biochem Soc Trans 38(2):545–551

    Article  CAS  Google Scholar 

  • Babady NE, Pang YP, Elpeleg O, Isaya G (2007) Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci USA 104(15):6158–6163

    Article  CAS  Google Scholar 

  • Bauman N, Hill CJ (1968) Inhibition of gluconeogenesis and alpha-keto oxidation by 5-methoxyindole-2-carboxylic acid. Biochemistry 7(4):1322–1327

    Article  CAS  Google Scholar 

  • Bauman N, Pease BS (1969) Effects of 5-methoxyindole-2-carboxylic acid on carbohydrate metabolism. Biochem Pharmacol 18(5):1093–1101

    Article  CAS  Google Scholar 

  • Brandt R, Gergou A, Wacker I, Fath T, Hutter H (2009) A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging 30(1):22–33

    Article  CAS  Google Scholar 

  • Brown AM et al (2007) Testing for linkage and association across the dihydrolipoyl dehydrogenase gene region with Alzheimer’s disease in three sample populations. Neurochem Res 32(4–5):857–869

    Article  CAS  Google Scholar 

  • Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57(5):695–703

    Article  CAS  Google Scholar 

  • Butler JA, Mishur RJ, Bhaskaran S, Rea SL (2013) A metabolic signature for long life in the Caenorhabditis elegans Mit mutants. Aging cell 12(1):130–138

    Article  CAS  Google Scholar 

  • Chaturvedi RK, Flint Beal M (2013) Mitochondrial diseases of the brain. Free Radical Biol Med 63:1–29

    Article  CAS  Google Scholar 

  • Cheng Q et al (2003) Caenorhabditis elegans mutants resistant to phosphine toxicity show increased longevity and cross-resistance to the synergistic action of oxygen. Toxicol Sci 73(1):60–65

    Article  CAS  Google Scholar 

  • Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS (2006) Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55(12):3320–3325

    Article  CAS  Google Scholar 

  • Deng Y et al (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer’s disease. Am J Pathol 175(5):2089–2098

    Article  CAS  Google Scholar 

  • Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochimica et biophysica acta 1787(11):1309–1316

    Article  CAS  Google Scholar 

  • Drummond IA, Lee AS, Resendez E Jr, Steinhardt RA (1987) Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts. J Biol Chem 262(26):12801–12805

    CAS  PubMed  Google Scholar 

  • Fatouros C et al (2012) Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum Mol Genetics 21(16):3587–3603

    Article  CAS  Google Scholar 

  • Freude S et al (2005) Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes 54(12):3343–3348

    Article  CAS  Google Scholar 

  • Friedland-Leuner K, Stockburger C, Denzer I, Eckert GP, Muller WE (2014) Mitochondrial dysfunction: cause and consequence of Alzheimer’s disease. Progress Mol Biol Transl Sci 127:183–210

    Article  CAS  Google Scholar 

  • Gibson GE et al (1998) Alpha-ketoglutarate dehydrogenase in Alzheimer brains bearing the APP670/671 mutation. Ann Neurol 44(4):676–681

    Article  CAS  Google Scholar 

  • Gibson GE, Park LC, Sheu KF, Blass JP, Calingasan NY (2000) The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int 36(2):97–112

    Article  CAS  Google Scholar 

  • Gibson GE et al (2012) Deficits in the mitochondrial enzyme alpha-ketoglutarate dehydrogenase lead to Alzheimer’s disease-like calcium dysregulation. Neurobiol Aging 33(6):1121 e1113–e1124

    Article  Google Scholar 

  • Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328

    Article  CAS  Google Scholar 

  • Hardas SS et al (2013) Oxidative modification of lipoic acid by HNE in Alzheimer disease brain. Redox Biol 1:80–85

    Article  CAS  Google Scholar 

  • Idan-Feldman A, Ostritsky R, Gozes I (2012) Tau and caspase 3 as targets for neuroprotection. Int J Alzheimer’s Dis 2012:493670

    Google Scholar 

  • Iqbal K, Grundke-Iqbal I (2006) Discoveries of tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: a personal historical perspective. J Alzheimer’s Dis: JAD 9(3 Suppl):219–242

    Article  CAS  Google Scholar 

  • Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta neuropathologica 118(1):53–69

    Article  CAS  Google Scholar 

  • Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010a) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664

    Article  CAS  Google Scholar 

  • Iqbal K et al (2010b) Alzheimer’s disease neurofibrillary degeneration: pivotal and multifactorial. Biochem Soc Trans 38(4):962–966

    Article  CAS  Google Scholar 

  • Iqbal K, Gong CX, Liu F (2013) Hyperphosphorylation-induced tau oligomers. Front Neurol 4:112

    Article  Google Scholar 

  • Jahangir Z, Ahmad W, Shabbiri K (2014) Alternate phosphorylation/O-GlcNAc modification on human insulin IRSs: a road towards impaired insulin signaling in Alzheimer and diabetes. Adv Bioinf 2014:324753

    Google Scholar 

  • Jeoung NH, Harris RA (2010) Role of pyruvate dehydrogenase kinase 4 in regulation of blood glucose levels. Korean Diabetes J 34(5):274–283

    Article  Google Scholar 

  • Kadavath H et al (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci USA 112(24):7501–7506

    Article  CAS  Google Scholar 

  • Kalpouzos G et al (2009) Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging 30(1):112–124

    Article  CAS  Google Scholar 

  • Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30(4):313–321

    Article  CAS  Google Scholar 

  • Kim B, Backus C, Oh S, Hayes JM, Feldman EL (2009) Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150(12):5294–5301

    Article  CAS  Google Scholar 

  • Kraemer BC, et al (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 100(17):9980–9985

    Article  CAS  Google Scholar 

  • Lee SJ, Murphy CT, Kenyon C (2009) Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab 10(5):379–391

    Article  CAS  Google Scholar 

  • Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101(29):10804–10809

    Article  CAS  Google Scholar 

  • Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J Neurochem 111(1):242–249

    Article  CAS  Google Scholar 

  • Mahoney TR, Luo S, Nonet ML (2006) Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc 1(4):1772–1777

    Article  CAS  Google Scholar 

  • Mathew MD, Mathew ND, Ebert PR (2012) WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PloS one 7(3):e33483

    Article  CAS  Google Scholar 

  • Meury J (1993) 5-Methoxyindole-2-carboxylic acid is a potent inhibitor of respiration and potassium ion transport in the archaebacterium Haloferax volcanii. FEMS Microbiol Lett 108(3):271–274

    Article  CAS  Google Scholar 

  • Mitani Y, Behrooz A, Dubyak GR, Ismail-Beigi F (1995) Stimulation of GLUT-1 glucose transporter expression in response to exposure to calcium ionophore A-23187. Am J Physiol 269(5 Pt 1):C1228–C1234

    Article  CAS  Google Scholar 

  • Nonet ML, Grundahl K, Meyer BJ, Rand JB (1993) Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73(7):1291–1305

    Article  CAS  Google Scholar 

  • Panneerdoss S, Siva AB, Kameshwari DB, Rangaraj N, Shivaji S (2012) Association of lactate, intracellular pH, and intracellular calcium during capacitation and acrosome reaction: contribution of hamster sperm dihydrolipoamide dehydrogenase, the E3 subunit of pyruvate dehydrogenase complex. J Androl 33(4):699–710

    Article  CAS  Google Scholar 

  • Peters A (2011) The selfish brain: Competition for energy resources. Am J Hum Biol 23(1):29–34

    Article  Google Scholar 

  • Resendez E Jr, Ting J, Kim KS, Wooden SK, Lee AS (1986) Calcium ionophore A23187 as a regulator of gene expression in mammalian cells. J Cell Biol 103(6 Pt 1):2145–2152

    Article  CAS  Google Scholar 

  • Robertson LA, Moya KL, Breen KC (2004) The potential role of tau protein O-glycosylation in Alzheimer’s disease. J Alzheimer’s Dis: JAD 6(5):489–495

    Article  CAS  Google Scholar 

  • Schlipalius DI et al (2012) A core metabolic enzyme mediates resistance to phosphine gas. Science 338(6108):807–810

    Article  CAS  Google Scholar 

  • Schulz TJ, et al (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293

    Article  CAS  Google Scholar 

  • Sudo Y, Mariash CN (1996) Lowering glucose depletes a thapsigargin-sensitive calcium pool and inhibits transcription of the S14 gene. Endocrinology 137(11):4677–4684

    Article  CAS  Google Scholar 

  • Sun J, Feng X, Liang D, Duan Y, Lei H (2012) Down-regulation of energy metabolism in Alzheimer’s disease is a protective response of neurons to the microenvironment. Journal of Alzheimer’s disease: JAD 28(2):389–402

    Article  CAS  Google Scholar 

  • Sweet IR, Gilbert M (2006) Contribution of calcium influx in mediating glucose-stimulated oxygen consumption in pancreatic islets. Diabetes 55(12):3509–3519

    Article  CAS  Google Scholar 

  • Tretter L, Adam-Vizi V (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond Ser B Biol Sci 360(1464):2335–2345

    Article  CAS  Google Scholar 

  • Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25(1):59–68

    Article  Google Scholar 

  • Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K (2013) Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimer’s Dis: JAD 33(Suppl 1):S123–S139

    Google Scholar 

  • Zhao W et al (2015) Impaired mitochondrial energy metabolism as a novel risk factor for selective onset and progression of dementia in oldest-old subjects. Neuropsychiatr Dis Treat 11:565–574

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Dr. Paul Ebert, Jürgen Goetz (Queensland Brain Institute), and Dr. Khadija Shabbiri for providing valuable suggestions and guidance related to experimental design and tau immunoblotting. The C. elegans strains were purchased from the CGC, University of Minnesota, USA. WA was supported by an IPRS PhD scholarship from the Australian government as well as UQCent scholarship from the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Waqar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, W. Dihydrolipoamide dehydrogenase suppression induces human tau phosphorylation by increasing whole body glucose levels in a C. elegans model of Alzheimer’s Disease. Exp Brain Res 236, 2857–2866 (2018). https://doi.org/10.1007/s00221-018-5341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5341-0

Keywords

Navigation